

Fuses Fuseholders

Fuse clips

Protectors for all electronic circuits and equipment

How to use this catalog

Example fuse requirements

Rated voltage:	DC 70 V or greater	Step 1
Terminal / mounting method:	Surface mount type	Step 2
Dimensions:	^w 2 mm × ^H 1.2 mm × ^L 4 mm or less	Step 2
Characteristic:	Inrush-withstand	Step 3
Region of use:	North America	Step 4
Rated current (<i>I</i> _N):	1.25 A	Step 5
I water water the strength water of sources	ant (a. y. 1, 1, 1, is 1, 1, times the nated summer	4)

 I_N refers to the fuse's rated current (e.g., 1.1 I_N is 1.1 times the rated current).

Using the "Search by rated voltage" pages

- Step 1 Select a rated voltage for the fuse suitable for the circuit in which it is to be inserted. Only select fuses with DC rated voltage for DC circuits, and those with AC rated voltage for AC circuits. Select a rated voltage higher than the voltage of the circuit.
- Step 2 Select a fuse that meets your mounting and dimensional requirements.
- Step 3 Select the characteristic.
- Step 4 Select the certification mark according to the region of use.
- Step 5 Confirm the type name of the selected fuse and proceed to the indicated product specification page.

Search by rated voltage (DC)

Step 1	Step 2	Step 3		5	Step	4		Step 5			
Rated voltage	Dimensions (mm)	Characteristic	×	(l) or	Sor St	S	Ø	Type name	Rated current	Page	
DC 72 V	^w 1.6 × ^H 1.05 × ^L 3.2	Quick-acting		•	•			11CF	100 mA–10 A	21	
	80° 724 3.16A			•	•			11CFB	100 mA–10 A	20	
								P11CF	100 mA–10 A	24	
				•	•			11CT	100 mA–10 A	21	
		Inrush-withstand		•	•			11CTB	100 mA–10 A	20	
								P11CT	100 mA–10 A	24	

If you cannot find a fuse satisfying your requirements, please contact your SOC sales representative. This catalog does not include fuses that treat 130% of the rated current as a non-fusing current in order to protect equipment used domestically in Japan. Please contact a sales reresentative for these products.

IMPORTANT

Before proceeding with final fuse selection, be sure to read Fuse Selection Process on p. 144 and Safety Precautions on p. 163.

The pre-arcing time-current characteristics on the individual product specification pages are plots of the average values of measurements obtained under conditions specified by us. These data are for reference only and are not intended to infer any guaranteed values.

Product name composition

■ Surface mount type	Ex. 11CT ↓ Type name	1A ↓ Rated current	R08B4 ↓ Packaging code (refer to p. 140)	
Sub-miniature type with leads	Ex. 25RT ↓ Type name	500mA ↓ Rated current	F003 ↓ Forming number (refer to p. 143)
■ Cartridge type	Ex. MT3 ↓ Type name Certification com	2.5A ↓ Rated current binations (● : Cer	N1 V Certification combination code tification acquired)	F013 V Forming number (refer to p. 142)

Code	PS	\$₽• / \$₽ •		S	\heartsuit
N1	•	•	•	—	—
N2	•	—	•	—	—
N3	•	•	_	_	_
N4	•	•	٠	٠	_
N5	•	•	٠	٠	•
N6	_	•	٠	٠	•
N7	_	•	•	•	_

Please contact your sales representative for information on products with certification combinations not included in this catalog.

RoHS-compliant

All products contained in this catalog are RoHS-compliant.

Products without the Pb-free indication use high melting temperature type solder containing 85% by weight or more lead. Application of lead in such solder is exempted from the RoHS Directive.

Terminology / Abbreviations

- 11CT Type Type name for products with the same size and dimensions as the 11CT. For example: 11CT, 11CF, P11CT, P11CF, DC35V11CT, DC35VP11CT, DC35VP11CF, DC86V11CT, 32V11CF, 11CFB, 11CTB
- 25CT Type Type name for products with the same size and dimensions as the 25CT. For example: 25CT, 25CF, P25CT, P25CF, DC35VP25CF, DC35VP25CF, DC300V25CF
- 25RT Type Type name for products with the same size and dimensions as the 25RT. For example: 25RT, 25RF, P25RT, P25RT, DC35VP25RF

Search by rated voltage (AC)

Rated voltage D	imensions (mm)	Characteristic	×	(b) or R1	or	S	Ŷ	Type name	Rated current	Page
	10 × ^L 32	_		•	•			500VBL1030A	5 A–50 A	60
	10 × ^L 31	_		•	•			500VBI1030	5 A–50 A	60
AC 500 V * 6	5.35 × [∟] 31.8	Inrush-withstand		•	•			SHV4	1 A–10 A	38
AC 500 V * 5	5.2 × ^L 20	Inrush-withstand		•	•			SHV12	100 mA–6.3 A	40
AC 500 V [¢] 6	5.35 × ^L 31.8	Inrush-withstand		•	•			SHV33 NSHV3	10 A–30 A 1 A–10 A	44
	10 × ^L 32	_						AC450VBL1030C	60 A	58
AC 400 V * 6	5.35 × [∟] 31.8	Inrush-withstand		•	•	•		SHV14	10 A–20 A 1 A–20 A	- 41
AC 400 V [¢] 5	5.2 × ^L 20	Inrush-withstand		•	•	•		SHV12	1 A–6.3 A 100 mA–6.3 A	- 40
AC 400 V 6 6).35 × [∟] 31.8	Inrush-withstand						NSHV13 NSHV23A	5 A–25 A 1 A–20 A	45

Rated volta	age Dimensions (mm)	Characteristic	¢ S K	(U) or R1	or 🚯	S	Ŷ	Type name	Rated current	Page
AC 400 V	¢ 5.2 × ^L 20	Inrush-withstand		•	•			SHV11	100 mA–6.3 A	39
AC 380 V	[¢] 6.35 × ^L 31.8	Inrush-withstand		•	•			SHV4	Over 10 A–20 A	38
AC 380 V	¢ 5.2 × ^L 20	Inrush-withstand		•	•			SHV2	1 A–6.3 A	38
AC 380 V	¢ 5.2 × ^L 20	Inrush-withstand		•	•			SHV1	1 A–6.3 A	37
AC 310 V	¢ 10.3 × ^L 37	_						PC1037C	30 A–80 A	50
AC 310 V	¢ 10.3 × ^L 37	_						PI1037C	30 A–80 A	52
AC 300 V	[¢] 6.35 × [∟] 31.8	Inrush-withstand	•					SHV4	1 A–20 A	38
AC 300 V	[¢] 5.2 × [∟] 20	Inrush-withstand	•					SHV2	1 A–6.3 A	38
AC 300 V	¢ 5.2 × ^L 20	Inrush-withstand	•					SHV1	1 A–6.3 A	37

Rated voltage	Dimensions (mm)	Characteristic	() () () () () () () () () () () () () ((U) or	Gr or GF	S	Ø	Type name	Rated current	Page
AC 250 V	[¢] 10 × [∟] 32									
E		_	•	•	•			AC250VBL1030C	40 A–60 A	58
AC 250 V	^w 3.6 × ^H 3.6 × ^L 17									
,	T LA II SHOP WAY	Inrush-withstand	•	•	•	•		36CT	1 A-6.3 A	34
AC 250 V	^w 3.6 × ^H 3.6 × ^L 11		•	•	•				63 mA–4 A	
		Quick-acting						36CFE	63 mA–125 mA	36
AC 250 V	^w 2.57 × ^H 2.57 × ^L 6.1	Quick-acting		•	•			25CF	63 mA–4 A	26
		Inrush-withstand		•	•			25CT	100 mA–3.15 A	27
AC 250 V	^w 2.57 × ^H 2.57 × ^L 9							05755		
		Quick-acting			•			25RF	100 mA–10 A	30
AC 250 V	^w 4 × ^H 7.7 × ^L 8.4									
	SOC FAXSWV S (*)	Inrush-withstand	•	•	•	•		SMC N4	4 A	37
AC 250 V	[¢] 10.3 × [∟] 38.1	Normal-acting						250V (A) LLC	500 mA–30 A	129
								250V (A) TLLC	500 mA-30 A	134
		Inrush-withstand		•	•			KST2 KST2 N1	1 A–30 A 6.3 A–30 A	75 75
<u></u>			-	•	•			SKM10	100 mA–30 A	95
								SKM10 N1	1 A–25 A	95
AC 250 V	[¢] 6.35 × [∟] 31.8							250V (A) LNC	100 mA–20 A	128
								SS2	50 mA–5 A	99
		Normal-acting			•			SS2 N1 SS6	50 mA-5 A	99
			•	•	•			SS6 N1	Over 5 A–8 A Over 5 A–8 A	100
E	2		•					250V (A) TLNC	100 mA-20 A	133
				•	•			CES14	100 mA-10 A	72
		Inrush-withstand		•	•			CES14 N1	100 mA–15 A 100 mA–10 A	72
		in asi-withstariu		•	-			CES14 N2	Over 10 A–15 A	73
			<u> </u>	•	•			ST4	100 mA-30 A	104
								ST4 N1	100 mA–8 A	104

Rated voltage Dir	mensions (mm)	Characteristic	(PS) *	(U) or R	or	S	Ŷ	Type name	Rated current	Page
AC 250 V [¢] 6.	.35 × ^L 30	Normal-acting	•					250V (A) LC	100 mA–20 A	127
		Inrush-withstand	•					250V (A) TLC	100 mA–30 A	132
		iniusii-witristanu	•	•	•	•		TLC N4	8 A–25 A	111
AC 250 V [¢] 6.	35 × ^L 25.4	Normal-acting		•	•			SL4	80 mA–2 A	96
AC 250 V [¢] 5.	.2 × ^L 20	Quick-acting						EQ	80 mA–6.3 A	62
		Quick-acting						HQ N7	400 mA–6.3 A	66
								250V (A) SC	100 mA–10 A	126
		Normal-acting		•	•			MQ4	62 mA-3 A	79
				•	•			MQ4 N1	62 mA–15 A 62 mA–3 A	79
					•				100 mA-3.5 A	
				•				MT4	100 mA–15 A	85
				•				MT4 D	100 mA–3.5 A 100 mA–15 A	87
		Inrush-withstand						MT4 N1	100 mA–3.5 A	85
								MT4 N1D	100 mA–3.5 A	88
								MT4 N2	Over 3.5 A–15 A	86
								MT4 N2D	Over 3.5 A–15 A	
								250V (A) TSC	100 mA–10 A	131
			•	•				ET	315 mA-6.3 A	63
		Time-lag		•	•	•		ET6	1 A-6.3 A	64
								HT N5	1 A–10 A	67
AC 250 V [¢] 4.	6 × ^L 16	Normal-acting	•					250V (A) MSC	100 mA–5 A	125
	<u></u>	Inrush-withstand	•					250V (A) TMSC	100 mA–5 A	130
AC 250 V [¢] 10	0.3 × ^L 38.1	Normal-acting	•					250V A LLCR	500 mA–30 A	129
		Inrush-withstand	•					250V (A) TLLCR	500 mA–30 A	134
		ini usii-witiistanu		•	•			SKM7	100 mA–30 A	94
AC 250 V [¢] 6.	.35 × ^L 31.8							250V (A) LNCR	100 mA–20 A	128
								SS1	50 mA–5 A	98
		Normal-acting						SS1 N1	50 mA–5 A	98
3								SS5	Over 5 A–8 A	100
N								SS5 N1	Over 5 A–8 A	101
				-				250V (A) TLNCR	100 mA-20 A	133
		1	-					CES15	100 mA-30 A	73
		Inrush-withstand						CES15 N1	100 mA_25 A	74
								ST3 ST3 N1	100 mA_30 A	103
AC 250 V [¢] 6.	.35 × ^L 30							ST3 N1	100 mA–8 A	103
		Normal-acting	•					250V (A) LCR	100 mA–20 A	127
		Inrush-withstand	•					250V (A) TLCR	100 mA–30 A	132
			•	•	•	•		TLCR N4	8 A–25 A	112

Dimensions (mm)	Characteristic	(PS) *	(U) or	Gr or	S	Ŷ	Type name	Rated current	Page
¢ 6.35 × ^L 20	Inrush-withstand	•	•	•			250VTMCR N1	1 A–20 A	69
[¢] 5.2 × [∟] 20							250V (A) SCR	100 mA–10 A	126
	Normal-acting		•	•			MQ3	62 mA–3 A 62 mA–15 A	- 78
							MQ3 N1	62 mA–3 A	78
			•	•			MT3	100 mA-3.5 A 100 mA-15 A	80
			•	•			MT3 D	100 mA-3.5 A 100 mA-15 A	82
	Inrush-withstand						MT3 N1	100 mA–3.5 A	80
II. II.									83
									-
			-						131
	Time-lag	•	•	-	-	_			65
	5			•			HTR N5	1 A–10 A	68
C 250 V [#] 4.6 × ^L 16	Normal-acting	•					250V (A) MSCR	100 mA–5 A	125
	Inrush-withstand	•					250V A TMSCR	100 mA–5 A	130
¢4× ^L 9	Quick-acting		•	•			NQ3	62 mA–10 A	92
	Inrush-withstand		•	•			NT3	100 mA–10 A	93
^w 2.57 × ^H 2.57 × ^L 6.1	Quick acting	•	•	•			2505	Over 4 A–6.3 A	26
and a factor	Quick-acting		•	•			25CF	Over 4 A–15 A	20
								Over 3.15 A-5 A	
	Inrush-withstand	•					25CT	100 mA–5 A	- 27
^w 2.57 × ^H 2.57 × ^L 9	Quick acting	•			•		25 P E	200 mA–5 A	- 30
	QUICK-ACIIIIY	•					ZUNF	100 mA–5 A	30
	Inrush-withstand		•	•			25RT	100 mA–5 A	30
[¢] 10.3 × [∟] 38.1	Normal-acting	•					(A) LLC	500 mA–30 A	119
	lamak 2011	•					(A) TLLC	500 mA–30 A	124
	Inrush-withstand						SKM2	3 A–15 A	94
	 [¢] 6.35 × ^L20 [¢] 5.2 × ^L20 [¢] 4.6 × ^L16 [¢] 4.6 × ^L16 [¢] 4.5 × ^L9 [¢] 4.5 × ^L9 ^w2.57 × ^L2.57 × ^L2.57 × ^L9 ^w2.57 × ^L2.57 × ^L2.	$^{\circ}$ 6.35 × ^L 20 $^{\circ}$ 6.35 × ^L 20 Normal-acting $^{\circ}$ 5.2 × ^L 20 Normal-acting $^{\circ}$ 1.6 × ^L 16 $^{\circ}$ 4.6 × ^L 16 $^{\circ}$ 1.7 × ^H 2.57 × ^L 6.1 $^{\circ}$ Quick-acting Inrush-withstand $^{\circ}$ 4.8 × ^L 9 $^{\circ}$ Quick-acting $^{\circ}$ 1.1 × ^L 2.57 × ^L 9 $^{\circ}$ Quick-acting $^{\circ}$ 1.3 × ^L 38.1 $^{\circ}$ 10.3 × ^L 38.1 $^{\circ}$ Normal-acting $^{\circ}$ 1.3 × ^L 38.1 $^{\circ}$ Normal-acting	* 6.35 × ¹ 20 Inrush-withstand * 5.2 × ¹ 20 Normal-acting * 5.2 × ¹ 20 Inrush-withstand Inrush-withstand • * 4.6 × ¹ 16 Inrush-withstand * 4.6 × ¹ 16 Normal-acting • 1 • • 1 • • 2 • • 1	* 6.35 × ¹ 20 * 5.2 × ¹ 20 * 5.2 × ¹ 20 Normal-acting * 6.35 × ¹ 20 Normal-acting * 6.35 × ¹ 20 * 6.35 × ¹ 20 Normal-acting * 6.5 × ¹ 20 Normal-acting * 6.5 × ¹ 20 * 6.5 × ¹ 20 Normal-acting * 6.5 × ¹ 20 * 7.5 × ¹ 2.57 × ¹ 6.1 * 7.57 × ¹ 2.57 × ¹ 6.1 * 7.57 × ¹ 2.57 × ¹ 9 * 7.57 × ¹ 2.57 × ¹ 2.57 × ¹ 2.57 × ¹ 3 * 7.57 × ¹ 2.57 ×	Dimensions (mm) Characteristic or or <thot< th=""> <thor< th=""> or <thor< th=""></thor<></thor<></thot<>	Dimensions (mm) Characteristic Image: mail of the second sec	Dimensions (mm) Characteristic or or <thot< th=""> <thor< th=""> or <thor< th=""></thor<></thor<></thot<>	Dimensions (mm) Characteristic or or< or <thor< th=""> <t< td=""><td>Dimensions (mm) Characteristic Image: Characteristicharacteristicharacteristic <thimage: characteristic<<="" td=""></thimage:></td></t<></thor<>	Dimensions (mm) Characteristic Image: Characteristicharacteristicharacteristic <thimage: characteristic<<="" td=""></thimage:>

Rated voltage Dimensions (mm)	Characteristic	PS *	(U) or R	or G	S	Ŷ	Type name	Rated current	Page
AC 125 V [¢] 6.35 × ^L 31.8							(A) LNC	100 mA–20 A	118
	Normal-acting						SS6	Over 8 A–15 A	100
							SS6 N1	Over 8 A–15 A	102
							(A) TLNC	100 mA–20 A	123
8							CES6	100 mA-15 A	70
	Inrush-withstand							100 mA–20 A	- 70
	ini usii-wiiiistanu						CES6 N1	100 mA–15 A	70
							ST6	100 mA–30 A	107
							ST6 N1	100 mA–15 A	108
AC 125 V [¢] 6.35 × ^L 30	Normal-acting	•					(A) LC	100 mA–20 A	117
	Inrush-withstand	•					(A) TLC	100 mA–30 A	122
AC 125 V [¢] 6.35 × ^L 25.4	Normal-acting		•	•			SL2	80 mA–6 A	96
AC 125 V [¢] 6.35 × ^L 15.9	Normal-acting		•				SU2	100 mA–20 A	109
AC 125 V [¢] 5.2 × ^L 20		•					(A) SC	100 mA–10 A	116
		-		•				62 mA-10 A	
	Normal-acting			•			MQ2	62 mA–15 A	- 77
3				•			MQ2 N1	62 mA-10 A	77
							(A) TSC	100 mA-10 A	121
	Inrush-withstand						ULTSC	100 mA-10 A	113
							ULTSC N1	100 mA-10 A	113
AC 125 V [¢] 4.6 × ^L 16	Normal-acting	•					(A) MSC	100 mA–5 A	115
	Inrush-withstand	•					(A) TMSC	100 mA–5 A	120
AC 125 V [¢] 4.6 × ^L 14	Normal-acting		•	•			SQ8	80 mA–3 A	97
	Inrush-withstand		•	•			MT8	100 mA–3 A	90
AC 125 V	Normal-acting	•					(A) LLCR	500 mA–30 A	119
	Inrush-withstand	•					(A) TLLCR	500 mA–30 A	124

Rated volta	ge Dimensions (mm)	Characteristic	× *	(U) or R1	or (F)	S	Ŷ	Type name	Rated current	Page
AC 125 V	[¢] 6.35 × [∟] 31.8							(A) LNCR	100 mA–20 A	118
		Normal-acting						SS5	Over 8 A–15 A	100
		5		•	•			SS5 N1	Over 8 A–15 A	101
								(A) TLNCR	100 mA-20 A	123
								CES7	100 mA–15 A	71
		Inrush-withstand			•			CES7 N1	100 mA–15 A	71
			-		•			ST5	100 mA-30 A	105
					•			ST5 N1	100 mA–15 A	106
AC 125 V	[¢] 6.35 × [∟] 30				-					1.00
AC 125 V		Normal-acting	•					(A) LCR	100 mA–20 A	117
		Inrush-withstand	•					(A) TLCR	100 mA–30 A	122
AC 125 V	[¢] 6.35 × ^L 15.9	Normal-acting		•				SU1	80 mA–5 A	109
AC 125 V	[¢] 5.2 × [∟] 20							(A) SCR	100 mA–10 A	116
					•				62 mA-10 A	
		Normal-acting		-	•			MQ1	62 mA–15 A	- 76
					•			MQ1 N1	62 mA-10 A	76
				-	-			(A) TSCR	100 mA-10 A	121
		Inrush-withstand	<u> </u>		•			ULTSCR	100 mA-10 A	114
				•	•			ULTSCR N1	100 mA–10 A	114
AC 125 V	[¢] 4.6 × [∟] 16	Normal-acting	•					(A) MSCR	100 mA–5 A	115
		Inrush-withstand	•					(A) TMSCR	100 mA–5 A	120
AC 125 V	¢ 4.6 × ^L 14	Normal-acting		•	•			SQ7	80 mA–3 A	97
		Inrush-withstand		•	•			MT7	100 mA–3 A	90
AC 125 V	¢ 4 × ^L 9	Quick-acting		•	•			NQ1	62 mA–10 A	92
		Inrush-withstand		•	•			NT1	100 mA–10 A	93
AC 90 V	^w 2.57 × ^H 2.57 × ^L 9	Quick-acting						P25RF	100 mA–10 A	31
		Inrush-withstand						P25RT	100 mA–6.3 A	31

Rated voltage	Dimensions (mm)	Characteristic	() () () () () () () () () () () () () ((U) or 91	Gen or	3	Ø	Type name	Rated current	Page
AC 42 V	[¢] 5.2 × ^L 20	Inrush-withstand						PMT4	100 mA–20 A	91
AC 32 V	$1.6 \times {}^{\text{H}}1.05 \times {}^{\text{L}}3.2$	Inrush-withstand				•		32V11CF	800 mA–6.3 A	23
AC 32 V	[₩] 1.5 × ^H 1.2 × ^L 2.4	Quick-acting		•	•			MCF3	28 mA–250 mA	33
AC 25 V	[₩] 1.5 × ^H 1.2 × ^L 2.4	Quick-acting		•	•			MCF3	260 mA–1 A	33
AC 12.5 V	[₩] 1.5 × ^H 1.2 × ^L 2.4	Quick-acting		•	•			MCF3	1.1 A–2.5 A	33

Search by rated voltage (DC)

Rated voltage	e Dimensions (mm)	Characteristic	⟨P ^S _w ⟩	(U) or R1	or 🖨	S	Ŷ	Type name	Rated current	Page
DC 1000 V	¢ 10.3 × ^L 37	_						PC1037C	30 A–50 A	50
DC 1000 V	¢ 10.3 × ^L 37	_						PI1037C	30 A–50 A	52
DC 900 V	¢ 10.3 × ^L 37	_						PC1037	10 A-40 A	49
E								PC1037C	40 A–50 A	50
DC 900 V	¢ 10.3 × ^L 37	_						PI1037	10 A-40 A	51
								PI1037C	40 A–50 A	52
DC 800 V	[¢] 40 × ^L 65	_						PT4065	400A	53
DC 700 V	¢ 10.3 × ^L 37	-						PC1037	50 A	49
DC 700 V	¢ 10.3 × ^L 37	_						PI1037	50 A	51
DC 700 V	[¢] 6.35 × [∟] 31.8	Inrush-withstand		•	•			SHV16	1 A-4 A	42
DC 700 V	¢ 6.35 × ^L 31.8	Inrush-withstand						NSHV15	1 A-4 A	47

Rated voltage	Dimensions (mm)	Characteristic	PS *	(U) or R1	Ger of the second secon	S	Ŷ	Type name	Rated current	Page
DC 600 V	[¢] 10.3 × [∟] 38.1	Normal-acting						LLD6500	15 A	110
DC 600 V	* 10.3 × ^L 37	_						PC1037	40 A–50 A	49
DC 600 V	* 10.3 × ^L 37	-						PI1037	40 A–50 A	51
DC 600 V	* 6.35 × ^L 24.6	-						DC600VBI625C	30 A	57
DC 600 V	^w 3.6 × ^H 3.6 × ^L 11	Quick-acting		•	•			36CFA	63 mA–3.15 A	35
DC 600 V	[₩] 3.6 × ^H 3.6 × ^L 11	Quick-acting		•	•			36CFE	63 mA–3.15 A	36
DC 550 V	* 6.35 × ^L 24.6	_						DC550VBI625C	35 A	56
DC 500 V	[¢] 40 × ^L 65	_						PT4065	400 A–500 A	53
DC 500 V	* 25 × ^L 42.6	_						DC500VBT2543	225 A	61

Rated voltage	Dimensions (mm)	Characteristic	×	(L) or R)	GF or	S	Ŷ	Type name	Rated current	Page
DC 500 V	¢ 10.3 × ^L 37							PC1037	10 A–60 A	49
D		_						PC1037C	70A	50
DC 500 V	[¢] 10 × [∟] 32			•	•			500VBL1030A	5 A–50 A 5 A–40 A	60
		_						DC500VBL1030F	60 A	59
DC 500 V	[¢] 6.35 × ^L 31.8	_						DC500VBC635C	5 A–30 A	57
DC 500 V	¢ 6.35 × ^L 24.6	_						DC500VBC625A	5 A–35 A	55
DC 500 V	* 10.3 × ^L 37							PI1037	10 A-60 A	51
	TTO TO MAN	-						PI1037C	70A	52
DC 500 V	[¢] 10 × [∟] 31			•	•			500 /5//000	5 A–50 A	
		_						500VBI1030	5 A–40 A	- 60
DC 500 V	¢ 6.35 × ^L 24.6	_						DC500VBI625C	5 A–35 A	56
DC 500 V	* 10.3 × ^L 38.1	Inrush-withstand		•	•			SHV22	1 A–10 A	43
DC 500 V	[¢] 6.35 × [∟] 31.8	Inrush-withstand						NSHV14	10 A	47

Rated voltage	Dimensions (mm)	Characteristic	PS *	(U) or	Stor or	S	Ŷ	Type name	Rated current	Page
DC 500 V	[¢] 6.35 × [∟] 25.4	Inrush-withstand		•	•			SHV18	1 A–30 A	42
DC 500 V	¢ 6.35 × [∟] 25.4	Inrush-withstand						NSHV17	1 A–30 A	48
DC 480 V	¢ 10.3 × ^L 37							PC1037	70 A–100 A	49
P		_						PC1037C	80A	50
DC 480 V	¢ 10.3 × ^L 37							PI1037	70 A–100 A	51
		_						PI1037C	80A	52
DC 450 V	* 31 × ^L 51	_						DC450VPT3050	250 A–350 A	55
DC 450 V	* 30 × ^L 50	_						DC450VBT3050	250 A–350 A	53
DC 450 V	* 26 × ^L 46	_						DC450VPT2545	180 A–225 A	54
DC 450 V	¢ 20 × ^L 35	_						DC450VPT2035	100 A–150 A	54
DC 450 V	[¢] 5.2 × [∟] 20			•	•			SHV20	500 mA-6.3 A	43
		Inrush-withstand						NSHV12	100 mA–6.3 A	46

Rated voltage	Dimensions (mm)	Characteristic	× S *	(l) or	Ger or	S	Ŷ	Type name	Rated current	Page
DC 450 V	[¢] 6.35 × ^L 25.4	Inrush-withstand		•	•			SHV27	6.3 A	44
DC 425 V	^w 3.6 × ^H 3.6 × ^L 11	Quick-acting		•	•			36CFA	4 A	35
DC 425 V	[₩] 3.6 × ^H 3.6 × ^L 11	Quick-acting		•	•			36CFE	4A	36
DC 420 V	[¢] 6.35 × [∟] 25.4	Inrush-withstand		•	•			SHV27	8 A–30 A	44
DC 400 V	[¢] 6.35 × [∟] 31.8	Inrush-withstand		•	•	•		SHV14	10 A-20 A	41
DC 400 V	[¢] 5.2 × ^L 20			•	•	•		0111/10	1 A–20 A 1 A–6.3 A	
		Inrush-withstand		•	•			SHV12	100 mA-6.3 A	40
DC 400 V	[¢] 6.35 × [∟] 31.8	Inrush-withstand						NSHV13	5 A–25 A	45
	A							NSHV23A	1 A–20 A	48
DC 400 V	¢ 5.2 × ^L 20	Inrush-withstand		•	•			SHV11	100 mA–6.3 A	39
DC 300 V	¢ 6.35 × ^L 24.6	_						DC550VBI625C	35 A	56

Rated volta	ge Dimensions (mm)	Characteristic	×	(U) or R1	Ger or Ger	S	Ŷ	Type name	Rated current	Page
DC 300 V	^W 3.6 × ^H 3.6 × ^L 17	Inrush-withstand		•	•			36CT	1 A–6.3 A	34
DC 300 V	^w 2.57 × ^H 2.57 × ^L 6.1	Quick-acting		•	•			DC300V25CF	63 mA–2 A	27
DC 250 V	[¢] 5.2 × [∟] 20	Inrush-withstand		•	•			SHV12	100 mA–6.3 A	40
DC 150 V	^w 2.57 × ^H 2.57 × ^L 6.1	Quick-acting		•	•			25CF	63 mA–15 A	26
DC 125 V	^W 3.6 × ^H 3.6 × ^L 11	Quick-acting						36CFE	63 mA–3.15 A	36
DC 125 V	^w 2.57 × ^H 2.57 × ^L 6.1	Inrush-withstand		•	•			25CT	100 mA–5 A	27
DC 125 V	^w 2.57 × ^H 2.57 × ^L 9	Quick-acting		•	•	•		25RF	200 mA–5 A 100 mA–10 A	30
		Inrush-withstand		•	•			25RT	100 mA–5 A	30
DC 125 V	[¢] 6.35 × [∟] 31.8			•	•			ST6	100 mA–30 A	107
		Inrush-withstand		•	•			ST6 N1	100 mA–15 A	108
DC 125 V	[¢] 5.2 × [∟] 20			•				MT4 D	100 mA–15 A	87
	U U	Inrush-withstand		•				MT4 N1D	100 mA–3.5 A	88
				•				MT4 N2D	Over 3.5 A–15 A	89

Rated voltag	ge Dimensions (mm)	Characteristic	×	(U) or R1	or	S	Ŷ	Type name	Rated current	Page
DC 125 V	[¢] 6.35 × [∟] 31.8	Inrush-withstand		•	•			ST5	Over 8 A–30 A	105
				•	•			ST5 N1	Over 8 A–15 A	106
DC 125 V	[¢] 6.35 × [∟] 30	Inrush-withstand		•	•			DC125VTLKR	800 mA–35 A	69
DC 125 V	¢ 5.2 × ^L 20			•				MT3 D	100 mA–15 A	82
		Inrush-withstand		•				MT3 N1D	100 mA–3.5 A	83
				•				MT3 N2D	Over 3.5 A–15 A	84
DC 100 V	¢4× ^L 9	Inrush-withstand						PNT5	100 mA–10 A	91
DC 90 V	^w 2.57 × ^H 2.57 × ^L 9	Quick-acting						P25RF	100 mA–10 A	31
DC 86 V	^w 2.57 × ^H 2.57 × ^L 6.1	Quick-acting		•	•			25CF	63 mA–5 A	26
		Inrush-withstand		•	•			25CT	100 mA–5 A	27
DC 86 V	[₩] 1.6 × ^H 1.05 × ^L 3.2	Inrush-withstand		•	•			DC86V11CT	100 mA–8 A	22
DC 72 V	¢ 10 × ^L 32	_						DC72VBL1030	50 A–70 A	59
DC 72 V	^w 2.57 × ^H 2.57 × ^L 6.1	Quick-acting		•				25CF	18 A	26

Rated voltage	Dimensions (mm)	Characteristic	PS *	(U) or R1	Ger or	S	Ŷ	Type name	Rated current	Page
DC 72 V	^w 1.6 × ^H 1.05 × ^L 3.2							11CF	100 mA-10 A	21
		Quick-acting						11CFB	100 mA–10 A	20
								P11CF	100 mA–10 A	24
	50C 72V 3.15A							11CT	100 mA–10 A	21
		Inrush-withstand		•				11CTB	100 mA–10 A	20
		ากานธกา-พาแกรเลกน	<u> </u>	•	-					-
	^w 1.5 × ^H 1.2 × ^L 2.4			1			1	P11CT	100 mA–10 A	24
DC 72 V	1.5 × 1.2 × 2.4	Quick-acting		•	•			MCF3	28 mA–250 mA	33
DC 60 V	^w 2.57 × ^H 2.57 × ^L 6.1	Quick-acting						P25CF	63 mA–18 A	28
		Inrush-withstand						P25CT	100 mA–5 A	28
DC 60 V	^w 2.57 × ^H 2.57 × ^L 9	Inrush-withstand						P25RT	100 mA–6.3 A	31
DC 60 V	[¢] 6.35 × [∟] 15.9									
		Normal-acting		•				DCSU2	Over 5 A–20 A	110
DC 42 V	[¢] 5.2 × ^L 20	Inrush-withstand						PMT4	100 mA–20 A	91
DC 35 V	^w 2.57 × ^H 2.57 × ^L 6.1	Quick-acting						DC35VP25CF	63 mA–18 A	29
		Inrush-withstand						DC35VP25CT	100 mA–5 A	29
DC 35 V	^w 1.6 × ^H 1.05 × ^L 3.2	Quick-acting						DC35VP11CF	100 mA–10 A	25
	80° T 3150			•				DC35V11CT	100 mA–10 A	22
		Inrush-withstand						DC35VP11CT	100 mA–10 A	25
DC 35 V	^w 2.57 × ^H 2.57 × ^L 9	Quick-acting						DC35VP25RF	100 mA–10 A	32
		Inrush-withstand						DC35VP25RT	100 mA–6.3 A	32

Rated voltag	e Dimensions (mm)	Characteristic	() () () () () () () () () () () () () ((U) or RN	S or S	S	Ø	Type name	Rated current	Page
DC 32 V	^W 1.6 × ^H 1.05 × ^L 3.2	Inrush-withstand		•	•	•		32V11CF	800 mA–6.3 A	23
DC 32 V	[₩] 1.5 × ^H 1.2 × ^L 2.4	Quick-acting		•	•			MCF3	260 mA–1 A	33
DC 25 V	^W 1.5 × ^H 1.2 × ^L 2.4	Quick-acting		•	•			MCF3	1.1 A–2.5 A	33

11CFB				Quick-a	cting Ro	HS-compliant	Pb free
	-arcing time-current ch		10A 10A 5A 3.15 2A 1A 630 10s	Soc 3.11	72N 5A B	Land pattern for ref (reference dim 1.35 1.2	1.8
Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
DC 72 V	c FN ° us	100 mA–10 A	50 A	Resistive circuit	75 K or less at 1.0 I _N	1.0 / _N until temperature stabilization occurs	Within 60 s at 2.0 <i>I</i> N

*1: Customer-requested rated current values can be supplied from within the given range

11CTB **RoHS-compliant** Inrush-withstand Pb free This product increases the 11CT's maximum usage temperature to 125 °C Representative pre-arcing time-current characteristics 50C 72V T 3.15A B mpooood 1.05 1111 3.2 1.6 100A Current 0A Land pattern for reflow soldering 104 5Δ (reference dimensions) 3 15A 2A 1.8 1A 14 630mA 1.35 1.2 1.35 100ms 10m Scale: 8/1 Pre-arcing time (mm) Current carrying Rated current (IN) Rated breaking Overload Rated voltage Certification Temp. rise *1 current capacity operation 1.0 *I*_N until temperature stabilization

Resistive

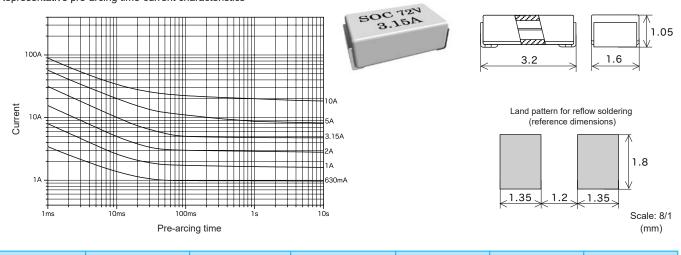
circuit

50 A

75 K or less at 1.0 *I*_N

*1: Customer-requested rated current values can be supplied from within the given range.

100 mA-10 A


c **Su**s

DC 72 V

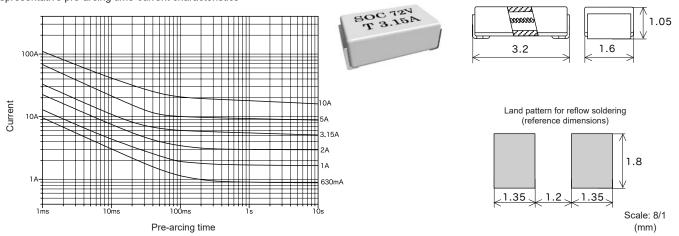
Within 60 s

at 2.0 I_N

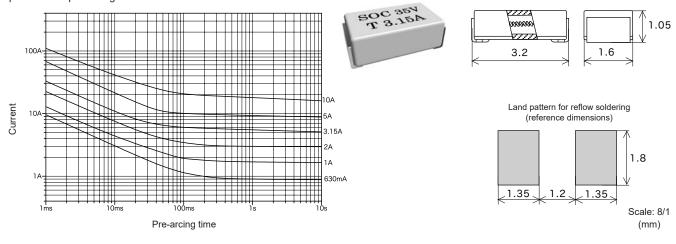
occurs

Rated voltage	Certifi	cation	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation	
DC 72 V	AI °	()	100 mA–10 A	50 A	Resistive circuit	75 K or less at 1.0 / _N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 60 s at 2.0 / _N	

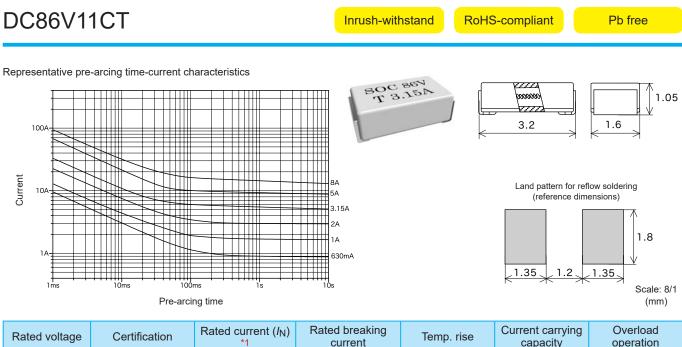
*1: Customer-requested rated current values can be supplied from within the given range.


11CT

Inrush-withstand RoHS



Representative pre-arcing time-current characteristics


Rated voltage	Certific	cation	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
DC 72 V	AI ®		100 mA–10 A	50 A	Resistive circuit	75 K or less at 1.0 / _N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 60 s at 2.0 / _N

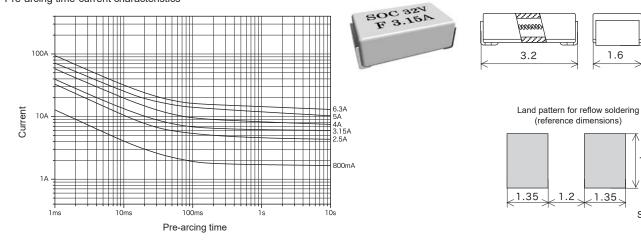
*1: Customer-requested rated current values can be supplied from within the given range.

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
DC 35 V	A	100 mA–10 A	50 A	Resistive circuit	75 K or less at 1.0 / _N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 60 s at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
DC 86 V	cULus	100 mA–8 A	50 A	Resistive circuit	75 K or less at 1.0 / _N	1.0 / _N until temperature stabilization occurs	Within 60 s at 2.0 <i>I</i> _N

*1: Customer-requested rated current values can be supplied from within the given range.

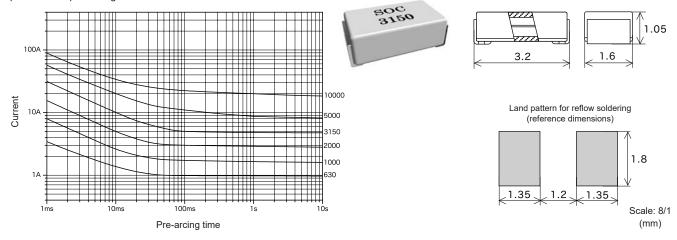

1.05

1.8

Scale: 8/1

(mm)

Pre-arcing time-current characteristics



Rated voltage	Certification	Rated current (<i>I</i> _N)		preaking rent	Temp. rise	Current carrying capacity / Endurance test	Overload operation	
AC / DC 32 V	S	800 mA 2.5 A 3.15 A	50 A	Resistive	*2	*3	Within 2 min at 2.0 / _N 0.001 s–0.01 s at 10 / _N	
DC 32 V	c FN [°] us	4 A 5 A 6.3 A	50 A	circuit	75 K or less at 1.0 <i>I</i> _N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 60 s at 2.0 <i>I</i> _N	

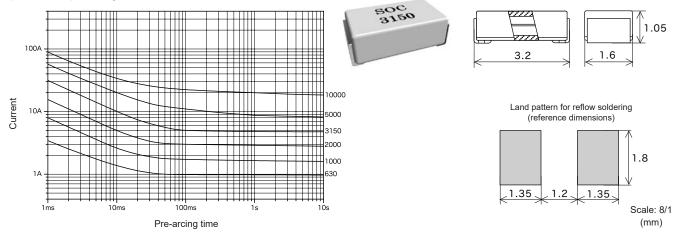
*1: This fuse is categorized as "Inrush-withstand" within SOC; however, it is referred to as Type F (Quick-acting) in the certificate issued by SEMKO.

*2: The temperature rise of the terminals is 70 K or less when measured during the last five minutes of carrying a 1.25 IN current for endurance testing.

*3: Endurance test: After 100 cycles of 1.05 IN 1 h on / 15 min off, 1.25 IN is passed through the fuse for 1 h.

Maximum working voltage	Certification	Rated current (<i>I</i> _N) *1		n breaking rrent	Temp. rise	Current carrying capacity	Overload operation
DC 72 V	-	100 mA–10 A	50 A	Resistive circuit	75 K or less at 1.0 / _N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 60 s at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.


Note: The rated current (in amperes) multiplied by 1,000 is indicated on the product and its packaging (e.g., "630" for the 0.63 A version). The product name is the type name followed by this value.

P11CT **RoHS-compliant** Protector Inrush-withstand Pb free Representative pre-arcing time-current characteristics 50C T 3150 \overline{m} poooood 1.05 1/// 1.6 3.2 100A **₩** Ш 0000 Current Land pattern for reflow soldering 10A 5000 (reference dimensions) 3150 T 2000 1.8 ----1000 ШΠ 630 1.35 1.35 1.2 1 1ms 100m 10m Scale: 8/1 (mm) Pre-arcing time

Maximum working voltage	Certification	Rated current (/ _N) *1		n breaking rrent	Temp. rise	Current carrying capacity	Overload operation	
DC 72 V	-	100 mA–10 A	50 A	Resistive circuit	75 K or less at 1.0 / _N	1.0 / _N until temperature stabilization occurs	Within 60 s at 2.0 / _N	

*1: Customer-requested rated current values can be supplied from within the given range.

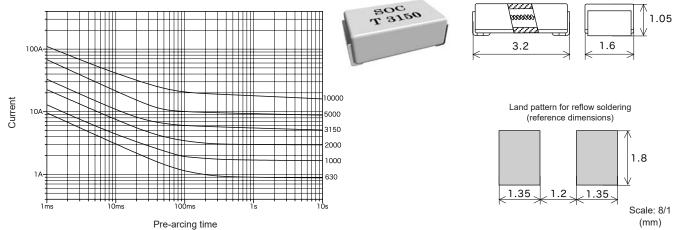
Note: The rated current (in amperes) multiplied by 1,000 is indicated on the product and its packaging (e.g., "630" for the 0.63 A version). The product name is the type name followed by this value.

Maxii working	mum voltage	Certification	Rated current (<i>I</i> _N) *1		n breaking rrent	Temp. rise	Current carrying capacity	Overload operation
DC 3	35 V	_	100 mA–10 A	50 A	Resistive circuit	75 K or less at 1.0 <i>I</i> _N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 60 s at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

Note: The rated current (in amperes) multiplied by 1,000 is indicated on the product and its packaging (e.g., "630" for the 0.63 A version). The product name is the type name followed by this value.

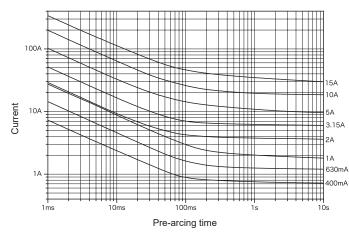
DC35VP11CT

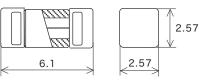

Protector

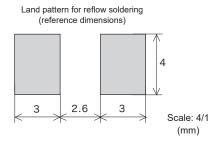
Inrush-withstand

RoHS-compliant

ant Pb free

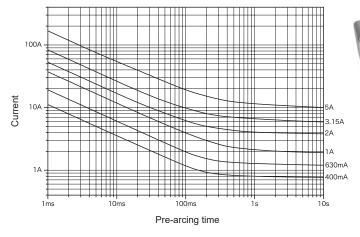

Representative pre-arcing time-current characteristics


Maximum breaking Overload Maximum Rated current (IN) Current carrying Certification Temp. rise working voltage current capacity operation 1.0 *I*_N until temperature Resistive 75 K or less Within 60 s DC 35 V 50 A 100 mA-10 A stabilization at 2.0 /_N circuit at 1.0 I_N occurs

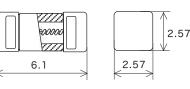

*1: Customer-requested rated current values can be supplied from within the given range.

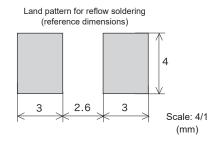
Note: The rated current (in amperes) multiplied by 1,000 is indicated on the product and its packaging (e.g., "630" for the 0.63 A version). The product name is the type name followed by this value.

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		oreaking rent	Temp. rise	Current carrying capacity / Endurance test	Overload operation
AC 250 V	91 ° ()	63 mA–4 A			75 K or less	10 k until	
		Over 4 A–10 A	50 A	50 A	at 1.0 / _N	1.0 / _N until temperature stabilization occurs	Within 60 s at 2.0 / _N
AC 125 V	71 ° ()),	Over 10 A–15 A			100 K or less at 1.0 / _N	occurs	
AG 123 V	PS *2	63 mA–6.3 A	*3	Resistive circuit	*4	*5	Within 2 min at 2.0 / _N 0.001 s–0.01 s at 10 / _N
DC 150 V	FL ()	63 mA–10 A	350 A		75 K or less at 1.0 / _N		
DC 130 V	FL ° (),	Over 10 A–15 A	330 A		100 K or less at 1.0 / _N	1.0 / _N until temperature	Within 60 s
DC 86 V	FL 🚯	63 mA–5 A	10000 A	75 K or less	staḃilization occurs	at 2.0 / _N	
DC 72 V	91 °	18 A	100 A		at 1.0 / _N		


*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.


*3: 50 A or 10 I_N , whichever is greater.


*4: The temperature rise of the terminals is 70 K or less when measured during the last five minutes of carrying a 1.25 IN current for endurance testing.

*5: Endurance test: After 100 cycles of 1.05 I_N 1 h on / 15 min off, 1.25 I_N is passed through the fuse for 1 h.

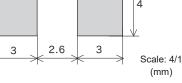
Rated voltage	Certification	Rated current (<i>I</i> _N) *1		oreaking rent	Temp. rise	Current carrying capacity/ Endurance test	Overload operation
AC 250 V	c (UL) us	100 mA–3.15 A			75 K or less	1.0 / _N until temperature	Within 60 s
		Over 3.15 A–5 A	50 A	a	at 1.0 <i>I</i> _N	stabilization occurs	at 2.0 / _N
AC 125 V	PS *2	100 mA E A	50 A	Resistive circuit	*3	*4	Within 2 min at 2.0 I _N
DC 125 V		350 A		75 K or less	1.0 / _N until temperature	Within 60 s	
DC 86 V	c (UL) us	1	10000 A		at 1.0 <i>I</i> _N	stabilization occurs	at 2.0 / _N

*1 Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: The temperature rise of the terminals is 70 K or less when measured during the last five minutes of carrying a 1.25 IN current for endurance testing.

*4: Endurance test: After 100 cycles of 1.05 /_N 1 h on / 15 min off, 1.25 /_N is passed through the fuse for 1 h.

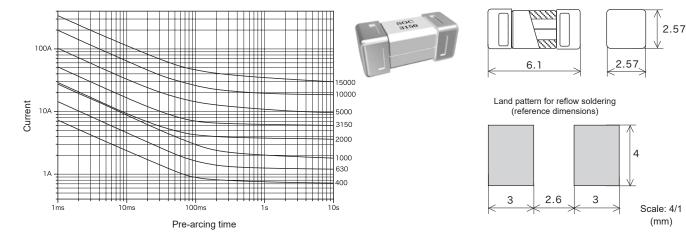

DC300V25CF **RoHS-compliant** Pb free Quick-acting Representative pre-arcing time-current characteristics 2.57 100A 6.1 2.57 10A Current Land pattern for reflow soldering (reference dimensions) 2A 1.6A 800mA 630mA 4 1A 400mA

100ms Pre-arcing time 1s

Ш

10ms

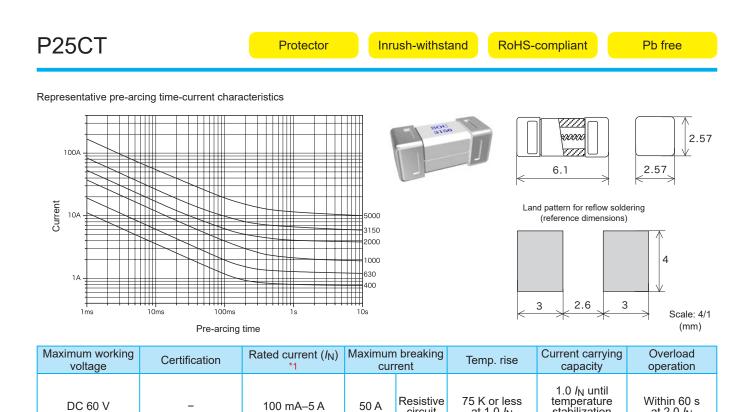
1ms


Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
DC 300 V	cULus	63 mA–2 A	50 A	Resistive circuit	75 K or less at 1.0 / _N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 60 s at 2.0 <i>I</i> N

10

*1: Customer-requested rated current values can be supplied from within the given range.

Quick-acting


Representative pre-arcing time-current characteristics

Maximum working voltage	Certification	Rated current (<i>I</i> _N) *1	Maximum breaking current		Temp. rise	Current carrying capacity	Overload operation
		63 mA–10 A			75 K or less at 1.0 <i>I</i> N	1.0 / _N until	
DC 60 V	-	Over 10 A–15 A	50 A	Resistive circuit	100 K or less at 1.0 / _N	temperature stabilization	Within 60 s at 2.0 / _N
		Over 15 A–18 A			75 K or less at 1.0 / _N	occurs	

*1: Customer-requested rated current values can be supplied from within the given range.

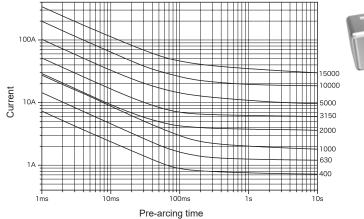
Note: The rated current (in amperes) multiplied by 1,000 is indicated on the product and its packaging (e.g., "630" for the 0.63 A version). The product name is the type name followed by this value.

*1: Customer-requested rated current values can be supplied from within the given range.

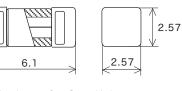
Note: The rated current (in amperes) multiplied by 1,000 is indicated on the product and its packaging (e.g., "630" for the 0.63 A version). The product name is the type name followed by this value.

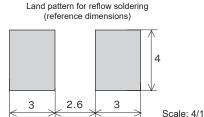
circuit

at 1.0 IN


stabilization

occurs


at 2.0 IN

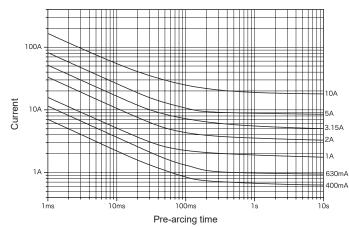

Quick-acting

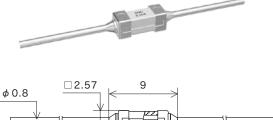
Representative pre-arcing time-current characteristics

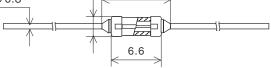
(mm)

Maximum working voltage	Certification	Rated current (<i>I</i> _N) *1	Maximum breaking current		Temp. rise	Current carrying capacity	Overload operation
		63 mA–10 A	50 A		75 K or less at 1.0 / _N	10 h. until	
DC 35 V	-	Over 10 A–15 A		Resistive circuit	100 K or less at 1.0 / _N	1.0 / _N until temperature stabilization	Within 60 s at 2.0 / _N
		Over 15 A–18 A			75 K or less at 1.0 <i>I</i> _N	occurs	

*1: Customer-requested rated current values can be supplied from within the given range.


Note: The rated current (in amperes) multiplied by 1,000 is indicated on the product and its packaging (e.g., "630" for the 0.63 A version). The product name is the type name followed by this value.


DC35VP25CT Protector Inrush-withstand **RoHS-compliant** Pb free Representative pre-arcing time-current characteristics 20000 2.57 100A 111 6.1 2.57 Land pattern for reflow soldering Current 10A 5000 (reference dimensions) 3150 +++++ 4 1000 630 1A 3 2.6 3 1ms 10m 100ms Scale: 4/1 105 Pre-arcing time (mm) Maximum working Rated current (IN) Maximum breaking Current carrying Overload Certification Temp. rise voltage current capacity operation

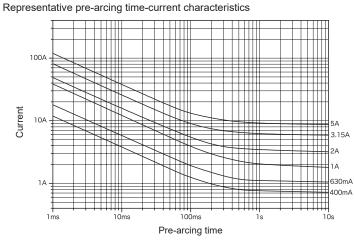

DC 35 V – 100 mA–5 A 50 A Resistive circuit 75 K or less at 1.0 /_N until temperature stabilization occurs Within 60 s

*1: Customer-requested rated current values can be supplied from within the given range.

Note: The rated current (in amperes) multiplied by 1,000 is indicated on the product and its packaging (e.g., "630" for the 0.63 A version). The product name is the type name followed by this value.

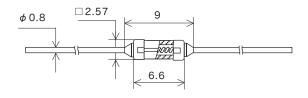
Scale: 2/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N)		oreaking rent	Temp. rise	Current carrying capacity	Overload operation	Endurance test
AC 125 V		200 mA, 250 mA 315 mA, 400 mA 500 mA, 630 mA 800 mA, 1 A		PF over 0.95			*4	After passing
DC 125 V	9	1.25 A, 1.6 A 2 A, 2.5 A, 3.15 A 4 A, 5 A		Resistive circuit	*3	4 h or more at 1.0 <i>I</i> _N	*4	0.8 / _N for 100 h, 1.0 / _N can be passed for 1 h or more
AC 125 V	PS *2	100 mA–5 A *1		PF over 0.95			Within 5 s at 2.0 <i>I</i> _N	
AC 250 V	(III)	100 mA 10 A *1	100 A	Resistive	75 K or less	1.0 <i>I</i> _N until temperature	Within 60 s	_
DC 125 V	c (UL) us	100 mA–10 A *1 300 A		circuit	at 1.0 / _N	stabilization occurs	at 2.0 <i>I</i> N	


*1: Customer-requested rated current values can be supplied from within the given range.
*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.
*3: After passing the rated current through the fuse for 15 min, the current is increased by 0.1 *I*_N every 15 min until the fuse operates. While the current is being

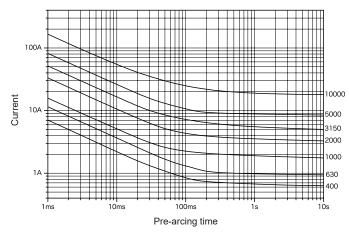
increased, the temperature rise at each part of the fuse shall not exceed 135 K.

Inrush-withstand

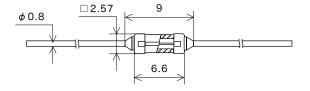

*4:	2.0 / _N	2.75 / _N	4.0 / _N	10 <i>I</i> N	
	Within 5 s	Within 0.3 s	Within 0.03 s	Within 0.004 s	

25RT

RoHS-compliant



Scale: 2/1 (mm)


Pb free

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		oreaking rent	Temp. rise	Current carrying capacity	Overload operation
AC 125 V	cULus	100 m 4 . E 4	100 A	_Resistive circuit	75 K or less at 1.0 <i>I</i> _N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 60 s at 2.0 <i>I</i> _N
DC 125 V		100 mA–5 A	300 A				

*1: Customer-requested rated current values can be supplied from within the given range.

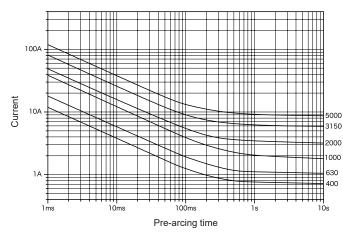
Scale: 2/1 (mm)

M	aximum working voltage	Certification	Rated current (<i>I</i> _N) *1	Maximum breaking current		Temp. rise	Current carrying capacity	Overload operation
	AC 90 V DC 90 V	_	100 mA–10 A	50 A	Resistive circuit	75 K or less at 1.0 / _N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 60 s at 2.0 / _N

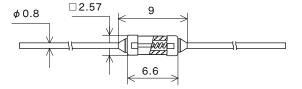
*1: Customer-requested rated current values can be supplied from within the given range.

Note: The rated current (in amperes) multiplied by 1,000 is indicated on the product and its packaging (e.g., "630" for the 0.63 A version). The product name is the type name followed by this value.

P25RT

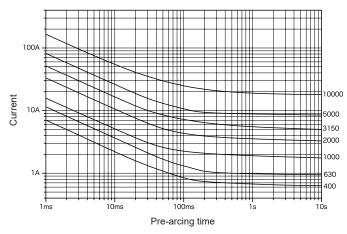

Protector

Inrush-withstand

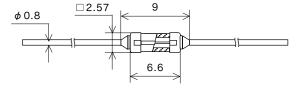

RoHS-compliant

Pb free

Representative pre-arcing time-current characteristics



Scale: 2/1 (mm)


Maximum working voltage	Certification	Rated current (<i>I</i> _N) *1	Maximum breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 90 V DC 60 V	-	100 mA–6.3 A	50 A	Resistive circuit	75 K or less at 1.0 <i>I</i> _N	1.0 / _N until temperature stabilization occurs	Within 60 s at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

Note: The rated current (in amperes) multiplied by 1,000 is indicated on the product and its packaging (e.g., "630" for the 0.63 A version). The product name is the type name followed by this value.

Scale: 2/1

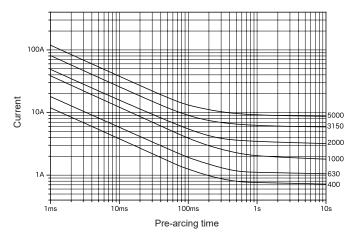
1	r	Y	2	r	Y	2	١	
(ľ	•	•	•	ľ	•	J	

ſ	Maximum working voltage	Certification	Rated current (<i>I</i> _N) *1	Maximum breaking current		Temp. rise	Current carrying capacity	Overload operation
	DC 35 V	_	100 mA–10 A	50 A	Resistive circuit	75 K or less at 1.0 <i>I</i> _N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 60 s at 2.0 / _N

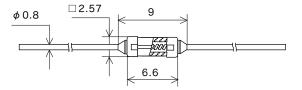
*1: Customer-requested rated current values can be supplied from within the given range.

Note: The rated current (in amperes) multiplied by 1,000 is indicated on the product and its packaging (e.g., "630" for the 0.63 A version). The product name is the type name followed by this value.

DC35VP25RT


Protector

Inrush-withstand


RoHS-compliant

Pb free

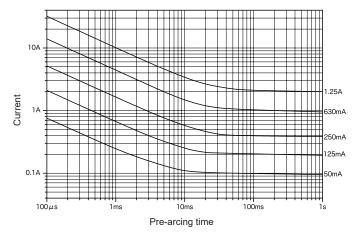
Representative pre-arcing time-current characteristics

Scale: 2/1 (mm)

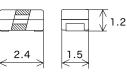
Maximum working voltage	Certification	Rated current (<i>I</i> _N) *1	Maximum breaking current		Temp. rise	Current carrying capacity	Overload operation
DC 35 V	-	100 mA–6.3 A	50 A	Resistive cirtcuit	75 K or less at 1.0 / _N	1.0 / _N until temperature stabilization occurs	Within 60 s at 2.0 / _N

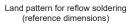
*1: Customer-requested rated current values can be supplied from within the given range.

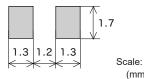
Note: The rated current (in amperes) multiplied by 1,000 is indicated on the product and its packaging (e.g., "630" for the 0.63 A version). The product name is the type name followed by this value.

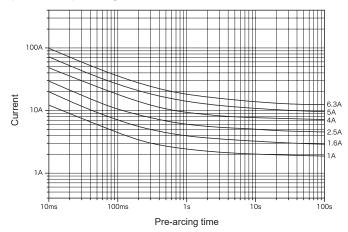

Quick-acting

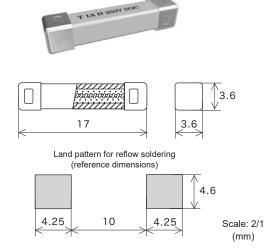
RoHS-compliant


Pb free


Airtight construction is achieved through use of highly precise insert molding techniques. *2


Representative pre-arcing time-current characteristics

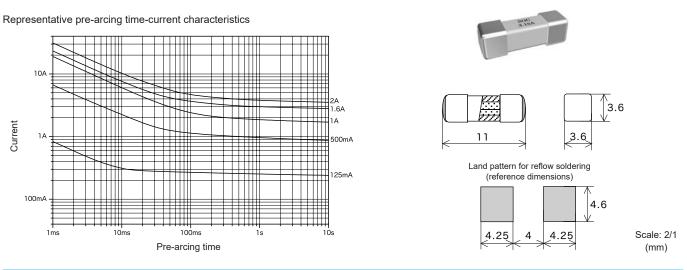



Scale: 5/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
AC 32 V		20 m 4 . 250 m 4		PF 0.95–1	75 K or less at 1.0 <i>I</i> N	1.0 / _N until temperature stabilization occurs	Within 60 s at 2.0 <i>I</i> _N
DC 72 V	cWus	28 mA–250 mA	50 A	Resistive circuit			
AC 25 V		260 mA–1 A		PF 0.95–1			
DC 32 V				Resistive circuit			
AC 12.5 V				PF 0.95–1			
DC 25 V		1.1 A–2.5 A		Resistive circuit			

*1: Customer-requested rated current values can be supplied from within the given range.

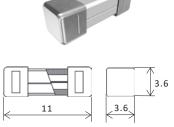
*2: This product satisfies the requirements of IEC 60079-11 10.6.2.

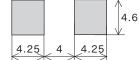


Rated voltage	Certification	Rated current (/ _N)		oreaking rent	Temp. rise	Current carrying capacity / Endurance test	Overload operation
	c Ru s	1A–6.3 A *1			75 K or less at 1.0 <i>I</i> N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 2 min at 2.0 <i>I</i> _N
AC 250 V	S	1 A 1.25 A 1.6 A 2 A 2.5 A 3.15 A 4 A 5 A 6.3 A	1500 A	PF 0.7–0.8	*2	*3	Within 2 min at 2.0 / _N 0.01 s–0.1 s at 10 / _N
	PSE	44.00.4.**	500 A		At 1.0 / _N 140 K or less at the center, 60 K or less at the contact	1.0 <i>I</i> _N until constant temperature is obtained on each part	Within 2 min
DC 300 V	c RL us	1A–6.3 A *1	200 A	Resistive circuit	75 K or less at 1.0 <i>I</i> N	1.0 / _N until temperature stabilization occurs	at 2.0 <i>I</i> N

*1: Customer-requested rated current values can be supplied from within the given range.
*2: The temperature rise of the terminals is 95 K or less when measured during the last five minutes of carrying a 1.25 I_N current for endurance testing.

*3: Endurance test: After 100 cycles of 1.05 IN 1 h on / 15 min off, 1.25 IN is passed through the fuse for 1 h.


RoHS-compliant*2


Rated voltage	Certification	Rated current (<i>I</i> _N)	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
DC 600 V	c PL °us	63 mA–3.15 A *1	100 A	Resistive	75 K or less	1.0 / _N until temperature	Within 60 s
DC 425 V		4 A	100 A	circuit	at 1.0 / _N	stabilization occurs	at 2.0 <i>I</i> N

*1: Customer-requested rated current values can be supplied from within the given range.
*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Representative pre-arcing time-current characteristics 100A \mathbb{N} Current 10A 4A 4A 2.5A 1.6A 1A 1A · 1ms 10ms 100ms 1s 10s Pre-arcing time

Land pattern for reflow soldering (reference dimensions)

Scale: 2/1 (mm)

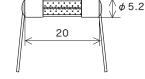
Rated voltage	Certification	Rated current (<i>I</i> _N)	Rated brea	king current	Temp. rise	Current carrying capacity / Endurance test	Overload operation
DC 425 V	c SN us	4 A	100 4				
DC 600 V	C The US	63 mA-3.15 A *1		Resistive	75 K or less at 1.0 / _N	1.0 <i>I</i> _N until temperature	Within 60 s
DC 125 V	-	03 MA-3. 13 A 1		circuit		stabilization occurs	at 2.0 / _N
	c FN us		100 A				
AC 250 V	63 mA-4 A *1	100 A	PF over 0.95	*3	*4	Within 2 min at 2.0 / _N Within 0.01 s at 10.0 / _N	
	-	63 mA–125 mA *1	1500 A	PF 0.7–0.8	75 K or less at 1.0 <i>I</i> N	1.0 / _N until temperature stabilization occurs	Within 60 s at 2.0 <i>I</i> _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: Not more than 95 K when measured during the final 5 min of the endurance test a 1.0 $I_{\rm N}$.

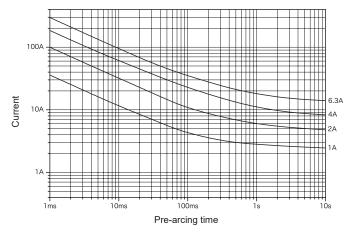
*4: After applying 0.8 I_N for 100 h, 1.0 I_N can be passed through the fuse for 1 h or more.

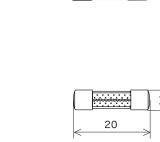

SMC N4 **RoHS-compliant** Pb free Inrush-withstand 8.4 4 Pre-arcing time-current characteristics SOC F 4A 250V 7.7 S 3 100A ++++φ0.6 19.5 Current 10A 5.08 Dimensions of mounting holes 1A (for reference) φ0.8 Θ 10ms 100ms 10 100 Scale: 2/1 5.08 Pre-arcing time (mm) Endurance test / Pre-arcing time-Rated breaking Rated voltage Certification Rated current (IN) Current carrying Temp. rise current current characteristics capacity 40 A *1 *2 *3 PF AC 250 V 4 A over 0.95 1.0 I_N until Within 30 min at 2.1 /_N 75 K or less temperature stabilization 50 A at 1.0 /_N occurs *1. After passing 1.5 IN through 15 min, the current is increased by 0.1 IN every 15 min until the fuse operates. While the current is being increased, the temperature rise at each part of the fuse shall not exceed 135 K. *2: After repeating 100 cycles of the rated current 1 h on / 15 min off, 1.5 IN is passed through the fuse for 1 h. *3: 2.1 /N 2.75 *I*N 4.0 *I*N 10 *I*N Within 30 min Within 0.02 s 0.01 s–3 s 0.003 s-0.3 s SHV1 Inrush-withstand **RoHS-compliant*2** Representative pre-arcing time-current characteristics

100A 6.3A Current 10A 3.15A 2A 1A 1A 1ms 10ms 100ms 105 15 Pre-arcing time

Rated breaking Overload Current carrying Rated current (IN) Rated voltage Certification Temp. rise current capacity operation 1.0 /_N until Resistive 75 K or less temperature AC 380 V (S₽• circuit at 1.0 I_N stabilization occurs Within 60 min at 2.1 *I*_N 1 A-6.3 A 500 A At 1.0 *I*_N, 140 K or less 1.0 I_N until constant PF 0.7–0.8 AC 300 V at the center, 60 K or less temperature is obtained at the contact on each part

*1: Customer-requested rated current values can be supplied from within the given range.


*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.



Lead wire diameter φ0.8 Scale: 1/1 (mm)

RoHS-compliant*2

Representative pre-arcing time-current characteristics

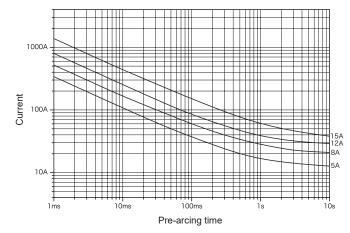
Scale: 1/1 (mm)

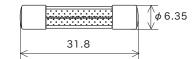
∲ 5.2

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 380 V	FL * () *	44.004		Resistive circuit	75 K or less at 1.0 <i>I</i> N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 60 min
AC 300 V	PS E	- 1 A–6.3 A	500 A	PF 0.7–0.8	At 1.0 / _N , 140 K or less at the center, 60 K or less at the contact	1.0 <i>I</i> _N until constant temperature is obtained on each part	at 2.1 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

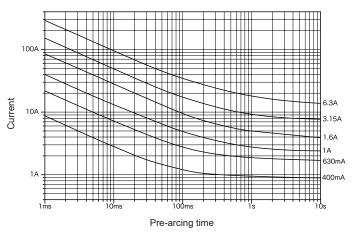

SHV4

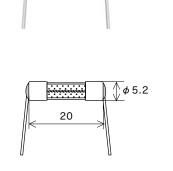

Inrush-withstand

RoHS-compliant*2

Pb free*2

Representative pre-arcing time-current characteristics

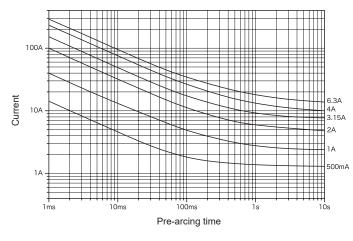

Scale: 1/1 (mm)

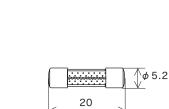

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 500 V	1 A-10 A		Resistive	75 K or less	1.0 / _N until temperature		
AC 380 V		Over 10 A–20 A	500 A	circuit	at 1.0 / _N	stabilization occurs	Within 60 min
AC 300 V	PS E	1 A–20 A	500 A	PF 0.7–0.8	-	1.0 <i>I</i> _N until constant temperature is obtained on each part	at 2.1 <i>I</i> N

*1: Customer-requested rated current values can be supplied from within the given range. Pb free

*2: 1 A-6.3 A

Over 6.3 A-20 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.


Lead wire diameter φ 0.8 Scale: 1/1 (mm)

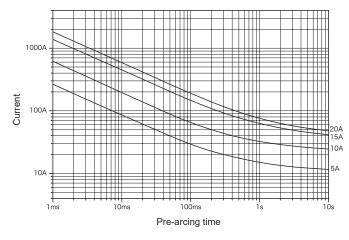

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 400 V		100 mA–6.3 A	500 A			1.0 <i>I</i> _N until	
DC 400 V	c FL us	100 MA-0.3 A	200 A	Resistive circuit	e 75 K or less at 1.0 <i>I</i> _N	temperature stabilization occurs	Within 30 min at 2.1 / _N
DC 400 V - *3	- *3	100 mA–2.5 A	1500 A				

*1: Customer-requested rated current values can be supplied from within the given range.
*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.
*3: This specification is based on SOC internal testing.

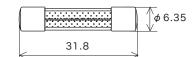
RoHS-compliant*2

Representative pre-arcing time-current characteristics

Scale: 1/1 (mm)

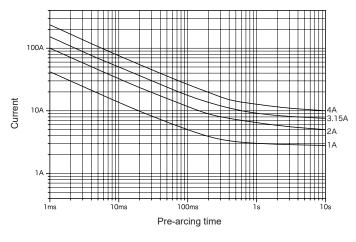

Rated voltage	Certification	Rated current (<i>I</i> _N)	Rated breaking current		Temp. rise	Current carrying capacity / Endurance test	Pre-arcing time-current characteristics		
AC 500 V			80 A		75 K or less	1.0 <i>I</i> _N until temperature	Within 30 min		
AC 400 V		100 mA–6.3 A *1	500 A		500 A		at 1.0 <i>I</i> _N	stabilization occurs	at 2.1 / _N
		1 A, 1.6 A, 2 A			Resistive				
DC 400 V	\bigcirc	3 A, 3.15 A, 4 A 5 A, 6.3 A	200 A	circuit	-	*3	*4		
DC 400 V		100 mA–6.3 A *1	1500 A		75 K or less at 1.0 <i>I</i> N	1.0 / _N until temperature stabilization occurs	Within 30 min at 2.1 / _N		
DC 250 V	A L (P)	100 mA=0.3 A 1	2000 A						

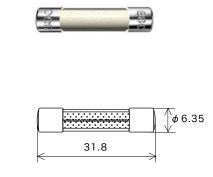
*1: Customer-requested rated current values can be supplied from within the given range.


*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.
*3: Endurance Test: After 100 cycles of 1.2 I_N 1 h on / 15 min off, 1.5 I_N is passed through the fuse for 1 h.

*3: *4:

4:	Rated current	2.1 <i>I</i> N	2.75 <i>I</i> N	4.0 <i>I</i> N	10 <i>I</i> N
	1 A	1 A 0.3 s-		0.095 s–0.5 s	0.01 s–0.03 s
	1.6 A, 2 A	Within 30 min	1 s–30 s	0.095 s–1 s	0.01 s–0.05 s
	3 A, 3.15 A 4 A, 5 A, 6.3 A		T S-30 S	0.15 s–1 s	0.02 s–0.1 s


Scale: 1/1 (mm)


Rated voltage	Certification	Rated current (<i>I</i> _N)	Rated breaking current		Temp. rise	Current carrying capacity / Endurance test	Pre-arcing time-current characteristics
AC 400 V	FL (),	1 A–20 A *1	500 4	Resistive	75 K or less at 1.0 / _N	1.0 / _N until temperature stabilization occurs	Within 30 min at 2.1 <i>I</i> _N
DC 400 V	S	10 A 15 A 20 A	500 A	circuit	-	*3	*4

*1: Customer-requested rated current values can be supplied from within the given range.

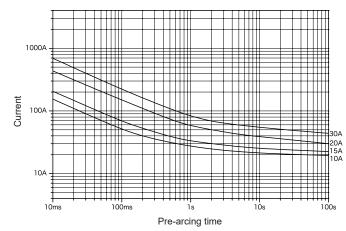
*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive. *3: Endurance Test: After 100 cycles of 1.2 /_N 1 h on / 15 min off, 1.5 /_N is passed through the fuse for 1 h.

υ.	Linuurance rest. Alter	100 Cycles 01 1.2 /N 1		N is passed through th	
*4:	2.1 / _N	2.75 <i>I</i> N	4.0 / _N	10 / _N	
	Within 30 min	1 s–80 s	0.15 s–5 s	0.02 s–0.1 s	

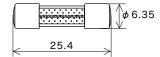
Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
DC 700 V	c RL us	1 A-4 A	500 A	Resistive circuit	75 K or less at 1.0 <i>I</i> _N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 30 min at 2.1 / _N

*1: Customer-requested rated current values can be supplied from within the given range.


*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

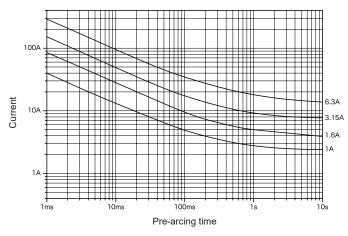
SHV18

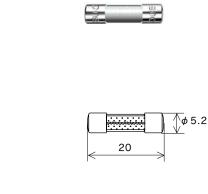

Inrush-withstand

RoHS-compliant*2

Representative pre-arcing time-current characteristics

Scale: 1/1 (mm)


Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
DC 500 V	c N °us	1 A–30 A	1000 A	Resistive circuit	_	1.0 <i>I</i> _N until temperature stabilization occurs	Within 30 min at 2.1 / _N


*1: Customer-requested rated current values can be supplied from within the given range.

*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

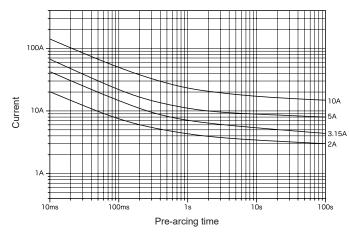
Representative pre-arcing time-current characteristics

SHV20

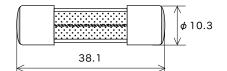
Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
DC 450 V	c RN ° us	500 mA–6.3 A	200 A	Resistive circuit	75 K or less at 1.0 <i>I</i> _N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 30 min at 2.1 / _N

*1: Customer-requested rated current values can be supplied from within the given range.


SHV22

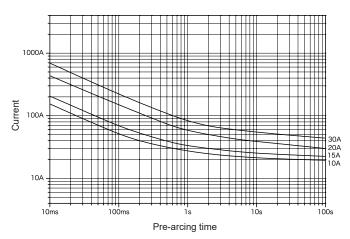
Inrush-withstand Ro

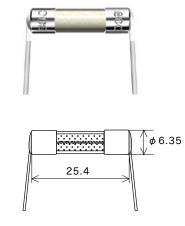

RoHS-compliant*2

Pb free*2

Representative pre-arcing time-current characteristics

\$008


Scale: 1/1 (mm)


Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
DC 500 V	c RN ° us	1 A–10 A	1000 A	Resistive circuit	75 K or less at 1.0 / _N	1.0 / _N until temperature stabilization occurs	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

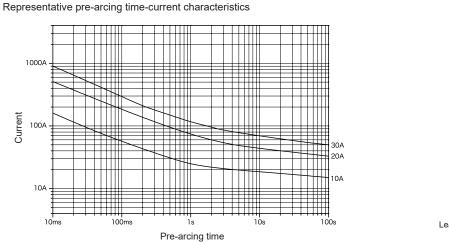
*2: 1 A–5 A Pb free

Over 5 A–10 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Lead wire diameter ϕ 1.2

Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
DC 450 V	c RN ° us	6.3 A	400 A	Resistive circuit	120 K or less at 1.0 / _N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 30 min at 2.1 / _N
DC 420 V		8 A–30 A					

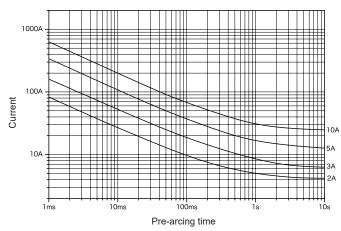

*1: Customer-requested rated current values can be supplied from within the given range.

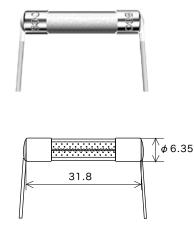
*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

SHV33

Inrush-withstand

RoHS-compliant*2


φ 6.35 31.8


Lead wire diameter ϕ 1.0 (10 A) Scale: 1/1 ϕ 1.2 (Over 10 A–30 A) (mm)

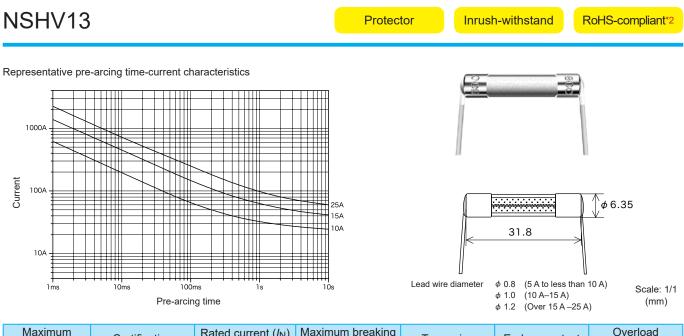
Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 500 V	c AL [°] us	10 A–30 A	500 A	Resistive circuit	150 K or less at 1.0 / _N	1.0 / _N until temperature stabilization occurs	Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Lead wire diameter ϕ 1.0

Scale: 1/1 (mm)

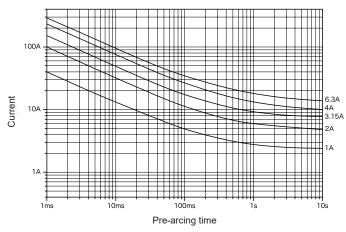

Maximum working voltage	Certification	Rated current (<i>I</i> _N) *1	Maximum breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 500 V	_	1 A–10 A	500 A	Resistive circuit	75 K or less at 1.0 <i>I</i> _N	_	Within 60 min at 2.1 / _N

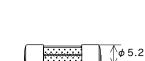
*1: Customer-requested rated current values can be supplied from within the given range.

Pb free

*2: 1 A–6.3 A Over 6.3 A–10 A

This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.




Maximum working voltage	Certification	Rated current (<i>I</i> _N) *1	Maximum breaking current		Temp. rise	Endurance test	Overload operation
AC 400 V DC 400 V	-	5 A–25 A	500 A	Resistive circuit	75 K or less at 1.0 <i>I</i> _N	*3	Within 30 min at 2.1 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

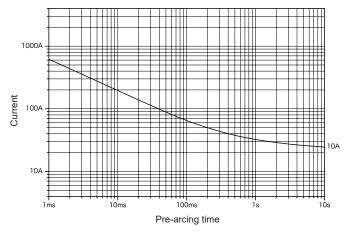
*3: After 100 cycles of 1.2 /_N 1 h on / 15 min off, 1.5 /_N is passed through the fuse for 1 h.

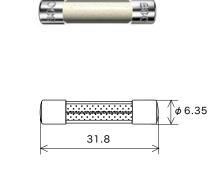
20

Scale: 1/1 (mm)

Maximum working voltage	Certification	Rated current (<i>I</i> _N) *1	ed current (/ _N) Maximum breaking current		Temp. rise	Current carrying capacity / Endurance test	Overload operation
DC 450 V	_	100 mA to less than 1 A	200.4	Resistive	75 K or less at 1.0 <i>I</i> _N	1.0 / _N until temperature stabilization occurs	Within 30 min at 2.1 / _N
DC 450 V		1 A–6.3 A	200 A	Resistive circuit	-	*3	*4

*1: Customer-requested rated current values can be supplied from within the given range.


*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive. *3: Endurance Test: After 100 cycles of 1.2 I_N 1 h on / 15 min off, 1.5 I_N is passed through the fuse for 1 h.

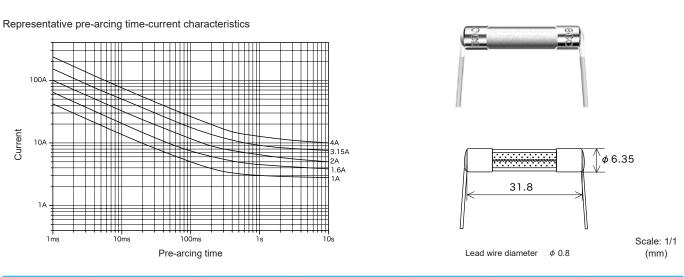

~~'2	
0	
*/	•
_	

Rated current	2.1 / _N	2.75 / _N	4.0 / _N	10 <i>I</i> N	
1 A	1 A		0.095 s–0.5 s	0.01 s–0.03 s	
1.25 A–2.5 A	Within 30 min	1 s–30 s	0.095 s–1 s	0.01 s–0.05 s	
3 A-6.3 A		1 5-30 5	0.15 s–1 s	0.02 s–0.1 s	

NSHV14

Inrush-withstand

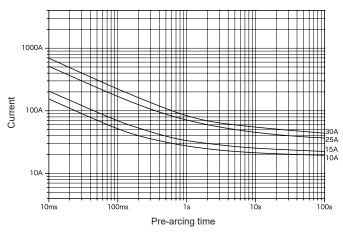
Scale: 1/1 (mm)

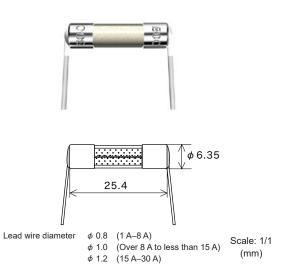

Maximum working voltage	Certification	Rated current (I _N)	Maximum breaking current		Temp. rise	Endurance test	Overload operation
DC 500 V	_	10 A	30 A	Resistive circuit	75 K or less at 1.0 / _N	*2	Within 30 min at 2.1 / _N

*1: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive. *2: After 100 cycles of 1.2 *I*_N 1 h on / 15 min off, 1.5 *I*_N is passed through the fuse for 1 h.

NSHV15

Protector


RoHS-compliant*2



Maximum working voltage	Certification	Rated current (<i>I</i> _N) *1	Maximum breaking current		Temp. rise	Current carrying capacity	Overload operation
DC 700 V	_	1 A-4 A	500 A	Resistive circuit	75 K or less at 1.0 / _N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 30 min at 2.1 <i>I</i> _N

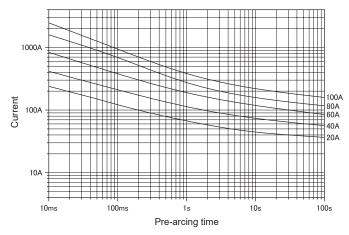
*1: Customer-requested rated current values can be supplied from within the given range.

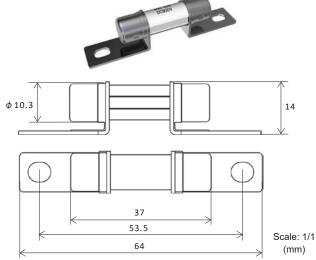
*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Maximum working voltage	Certification	Rated current (<i>I</i> _N) *1	Maximum breaking current		Temp. rise	Current carrying capacity	Overload operation
DC 500 V	-	1 A–30 A	1000 A	Resistive circuit	75 K or less at 0.5 / _N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

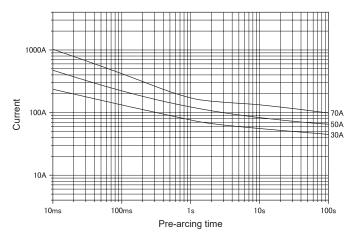

NSHV23A Protector Inrush-withstand **RoHS-compliant*2** Representative pre-arcing time-current characteristics 1000A Current 100A / / 🗍 ø 6.35 20A 15A 10A 31.8 6.3A 10A 1ms 10ms 100ms 1. 0 s Scale: 1/1 1s Lead wire diameter Pre-arcing time φ 1.0 (mm)

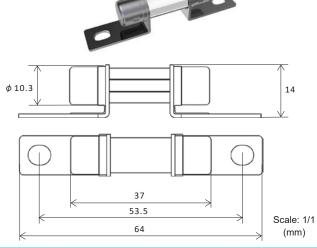

Maximum working voltage	Certification	Rated current (<i>I</i> _N) *1	Maximum breaking current		Temp. rise	Endurance Test	Overload operation
AC 400 V DC 400 V	-	1 A–20 A	500 A	Resistive circuit	75 K or less at 1.0 <i>I</i> _N	*3	Within 30 min at 2.1 <i>I</i> _N

*1: Customer-requested rated current values can be supplied from within the given range.

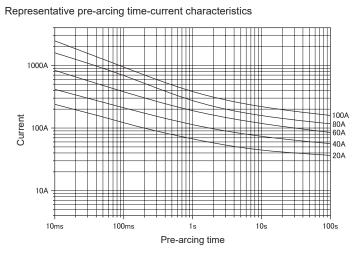
*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

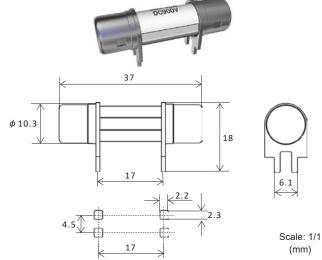
*3: After 100 cycles of 1.2 /N 1 h on / 15 min off, 1.5 /N is passed through the fuse for 1 h.

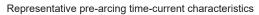


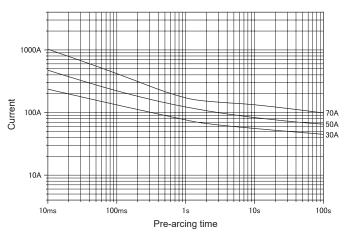


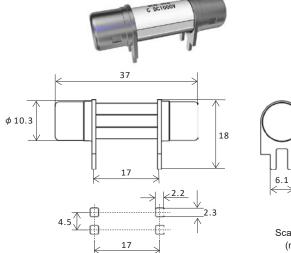
Rated voltage	Rated current (/ _N) *1	Rated b curr		Min. breaking current	Voltage drop	Temp. rise	Current carrying capacity	Overload operation
DC 900 V	10 A	30000 A		10.0 <i>I</i> N				*2
DC 500 V	IUA	16000 A		3.0 / _N	-			2
DC 900 V	20A	10000 A		10.0 <i>I</i> N		50 K or less		*3
DC 500 V	20A	16000 A	Resistive circuit	3.0 / _N		at 0.7 <i>I</i> N	4 h or more at 1.1 <i>I</i> _N	3
DC 900 V	20.4	10000 A		10.0 <i>I</i> _N				
DC 500 V	- 30 A	16000 A		3.0 / _N				
DC 900 V		5000 A		10.0 <i>I</i> _N	200 mV or less at 1.0 <i>I</i> N	50 K or less		
DC 600 V	40 A	10000 A		5.0 / _N				
DC 500 V		16000 A		3.0 / _N				*4
DC 700 V		5000 A		5.0.1		at 0.6 <i>I</i> N		
DC 600 V	50 A	10000 A		5.0 / _N				
DC 500 V]	16000 A		3.0 / _N			_	
DC 500 V	60 A	10000 A		3.0 / _N		50 K or less at 0.5 <i>I</i> N		
DC 480 V	70 A, 80 A 90 A, 100 A	5000 A		3.0 / _N	-	50 K or less at 0.5 <i>I</i> N		*5


*2:	3.0 / _N	5.0 / _N]		
	Within 10 min	0.1 s–15 s			
*3:	2.0 / _N	3.0 / _N	5.0 / _N]	
	Within 2 min	0.1 s–15 s	0.05 s–1 s		
*4:	1.35 <i>I</i> N	1.5 / _N	2.0 / _N	3.0 / _N	5.0 / _N
	150 s–3600 s	10 s–1000 s	0.5 s–100 s	0.1 s–15 s	0.05 s–1 s
*5:	1.5 / _N	2.0 / _N	3.0 / _N	5.0 / _N	
	10 s–1000 s	0.5 s–100 s	0.1 s–15 s	0.05 s–1 s	


Representative pre-arcing time-current characteristics

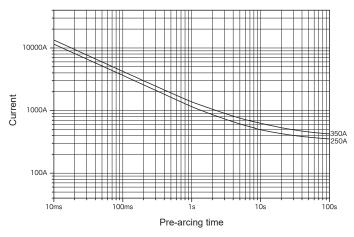

Rated voltage	Rated current (<i>I</i> _N) *1	Rated brea	aking current	Min. breaking current	Temp. rise	Current carrying capacity	Overload operation
DC 1000 V	30 A			40.0 <i>I</i> _N			
DC 1000 V	40 A	20000 A 5		50.0 / _N			
DC 900 V	50 A		Resistive	20.0 / _N	75 K or less	4 h or more	Within 60 s
DC 500 V	70 A		circuit	10.0 <i>I</i> _N	at 0.5 / _N	at 1.0 / _N	at 2.5 <i>I</i> N
DC 480 V	80 A	10000 A		10.0 <i>I</i> _N			
AC 310 V	30 A, 40 A 50 A, 70 A, 80 A			2.0 / _N			

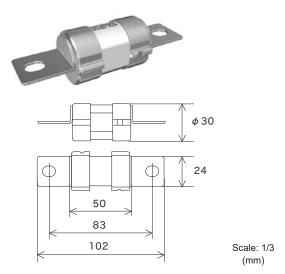




							-		
Rated voltage	Rated current (/ _N) *1	Rated b curr		Min. breaking current	Voltage drop	Temp. rise	Current carrying capacity	Overload operation	
DC 900 V	10 A	30000 A		10.0 <i>I</i> N				*2	
DC 500 V	IUA	16000 A		3.0 / _N				2	
DC 900 V	20A	10000 A		10.0 <i>I</i> N		50 K or less		*3	
DC 500 V	- 20A	16000 A		3.0 / _N		at 0.7 <i>I</i> _N		"3 	
DC 900 V	20.4	10000 A		10.0 <i>I</i> N					
DC 500 V	- 30 A	16000 A		3.0 / _N					
DC 900 V		5000 A	Resistive	10.0 <i>I</i> N	200 mV or less at 1.0 <i>I</i> _N		4 h or more		
DC 600 V	40 A	10000 A	circuit	5.0 / _N		50 K or less	at 1.1 <i>I</i> N		
DC 500 V		16000 A		3.0 / _N				*4	
DC 700 V		5000 A		5.0.1		at 0.6 <i>I</i> _N			
DC 600 V	50 A	10000 A		5.0 / _N					
DC 500 V		16000 A		3.0 / _N					
DC 500 V	60 A	10000 A	3.0 / _N	3.0 / _N		50 K or less at 0.5 <i>I</i> N			
DC 480 V	70 A, 80 A 90 A, 100 A	5000 A		3.0 / _N	-	50 K or less at 0.5 <i>I</i> N		*5	

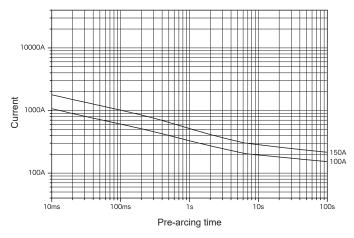
*2:	3.0 / _N	5.0 / _N			
	Within 10 min	0.1 s–15 s			
*3:	2.0 / _N	3.0 / _N	5.0 / _N		
	Within 2 min	0.1 s–15 s	0.05 s–1 s		
*4:	1.35 <i>I</i> N	1.5 <i>I</i> N	2.0 / _N	3.0 / _N	5.0 <i>I</i> N
	150 s–3600 s	10 s–1000 s	0.5 s–100 s	0.1 s–15 s	0.05 s–1 s
*5:	1.5 <i>I</i> N	2.0 / _N	3.0 / _N	5.0 / _N	
	10 s–1000 s	0.5 s–100 s	0.1 s–15 s	0.05 s–1 s	

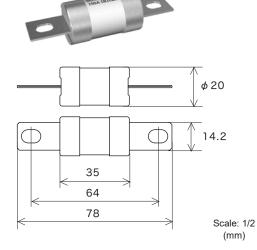




Rated voltage	Rated current (<i>I</i> _N) *1	Rated brea	aking current	Min. breaking current	Temp. rise	Current carrying capacity	Overload operation
DC 1000 V	30 A			40.0 / _N			
DC 1000 V	40 A	20000 A		50.0 / _N			
DC 900 V	50 A		Resistive	20.0 / _N	75 K or less	4 h or more	Within 60 s
DC 500 V	70 A		circuit	10.0 <i>I</i> N	at 0.5 / _N	at 1.0 / _N	at 2.5 / _N
DC 480 V	80 A	10000 A		10.0 <i>I</i> N			
AC 310 V	30 A, 40 A 50 A, 70 A, 80 A			2.0 / _N			

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Min. breaking current	Temp. rise	Overload operation
DC 450 V	_	250 A 350 A	5000 A	Resistive circuit	2.0 / _N	50 K or less at 0.5 <i>I</i> _N	0.05 s–1 s at 5.0 / _N


*1: Please contact your local SOC sales representative for rated currents which are not listed.


PT4065

Current

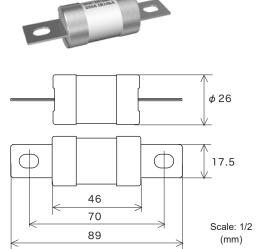
RoHS-compliant Pb free Representative pre-arcing time-current characteristics # 10000A t φ40 1000A 500A 400A Φ Φ 25 100A 65 98 10ms . 100ms 1s 10s 100s Scale: 1/3 Pre-arcing time 118 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current	Min. breaking current	Current carrying capacity	Overload operation
DC 800 V		400 A	10000 A (⊺ ≦ 1 ms)	20.0 <i>I</i> _N		-
DC 500 V	-	400 A	20000 A	2.0 /N	0.75 <i>I</i> _N until temperature stabilization occurs	1 s–300 s
DC 300 V		500 A	(ĭ ≦ 1 ms)	2.0 N		at 2.0 <i>I</i> N

Rated current (IN) Rated breaking Min. breaking Overload Rated voltage Certification Temp. rise current current operation ۴1 100 A 50 K or less at 0.5 *I*_N Resistive DC 450 V 125 A 10000 A 2.0 /_N *2 _ circuit 150 A

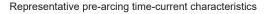
*1: Please contact your local SOC sales representative for rated currents which are not listed.

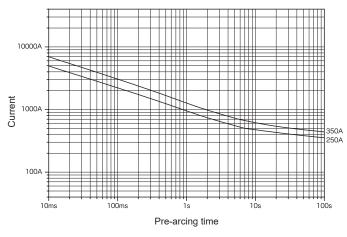
*2:	2.0 / _N	3.0 / _N	5.0 / _N
	1 s–300 s	0.2 s–30 s	0.05 s–1 s

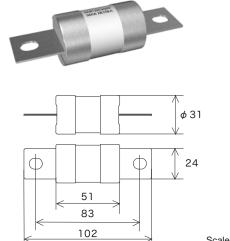

DC450VPT2545

Representative pre-arcing time-current characteristics

RoHS-compliant


Pb free


10000A Current 10004 225A Ħ 180A 100A 10ms 100ms 10s 100s ls Pre-arcing time

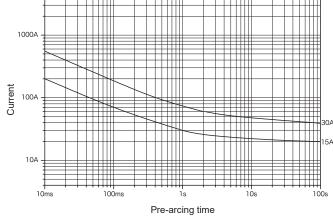


Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Min. breaking current	Temp. rise	Overload operation
DC 450 V	-	180 A 200 A 225 A	10000 A	Resistive circuit	2.0 <i>I</i> N	50 K or less at 0.5 <i>I</i> N	*2

*2:	2.0 / _N	3.0 / _N	5.0 / _N
	1 s–300 s	0.2 s–30 s	0.05 s–1 s

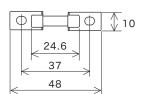
Scale: 1/3 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Min. breaking current	Temp. rise	Overload operation
DC 450 V	_	250 A 300 A 350 A	16000 A	Resistive circuit	2.0 / _N	50 K or less at 0.5 / _N	*2


*1: Please contact your local SOC sales representative for rated currents which are not listed.

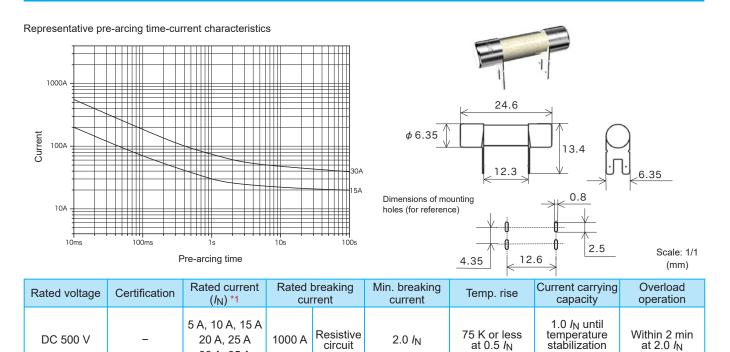
*2:	2.0 / _N	3.0 / _N	5.0 / _N
	1 s–300 s	0.2 s–30 s	0.05 s–1 s

DC500VBC625A


RoHS-compliant*2

Representative pre-arcing time-current characteristics

φ 6.35



Scale: 1/2 (mm)

Rated voltage	Certification	Rated current (/ _N) *1	Rated breaking current		Min. breaking current	Temp. rise	Current carrying capacity	Overload operation
DC 500 V	-	5 A, 10 A, 15 A 20 A, 25 A 30 A, 35 A	1000 A	Resistive circuit	2.0 / _N	75 K or less at 0.5 <i>I</i> N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 2 min at 2.0 / _N

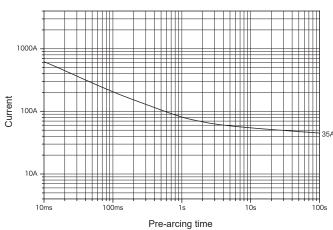
*1: Please contact your local SOC sales representative for rated currents which are not listed.

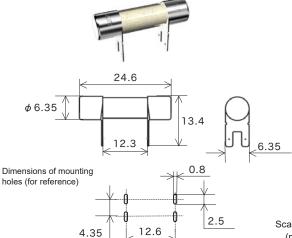
*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

30 A, 35 A *1: Please contact your local SOC sales representative for rated currents which are not listed.

*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

circuit

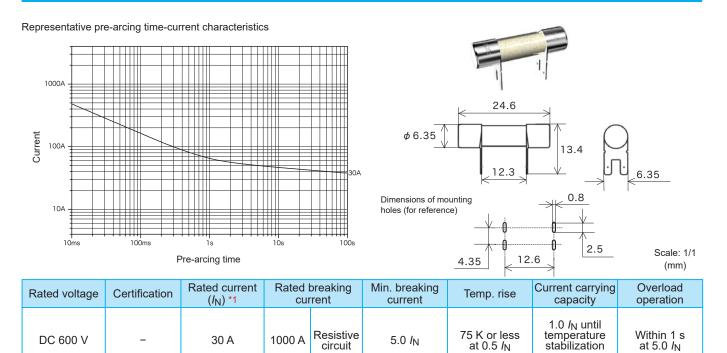

DC550VBI625C


RoHS-compliant*2

stabilization

occurs

Representative pre-arcing time-current characteristics



Scale:	1/
(mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Min. breaking current	Temp. rise	Current carrying capacity	Overload operation
DC 550 V		35 A	1000 A Resistive	500 A	75 K or less	1.0 / _N until temperature	Within 1 s	
DC 300 V	_	55 A	2000 A	circuit	70 A	at 0.5 / _N	stabilization occurs	at 500 A

*1: Please contact your local SOC sales representative for rated currents which are not listed.

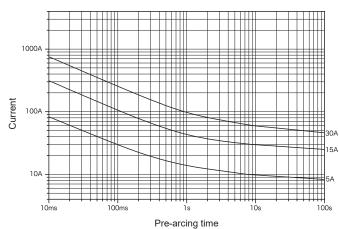
*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

1000 A

*1: Please contact your local SOC sales representative for rated currents which are not listed.

30 A

*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

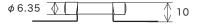

circuit

5.0 /_N

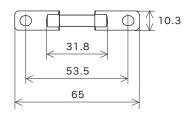
DC500VBC635C

DC 600 V

Representative pre-arcing time-current characteristics



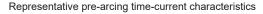
stabilization

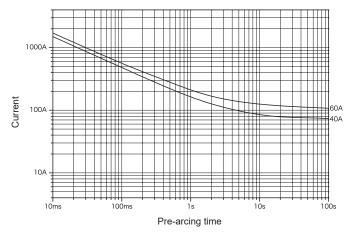

occurs

at 5.0 /_N

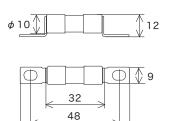
Pb free

RoHS-compliant



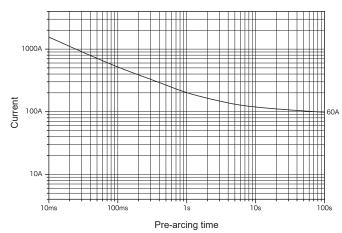

Scale: 1/2 (mm)

Rated voltage	Certification	Rated current (/ _N) *1	Rated breaking current		Min. breaking current	Temp. rise	Current carrying capacity	Overload operation
DC 500 V	_	5 A 15 A 30 A	2000 A	Resistive circuit	2.0 / _N	50 K or less at 0.7 <i>I</i> N	4 h or more at 1.1 <i>I</i> _N	*2


*2:	2.0 <i>I</i> N	3.0 <i>I</i> N	5.0 <i>I</i> N	
	0.5 s–100 s	0.1 s–15 s	0.05 s–1 s	

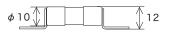
AC250VBL1030C

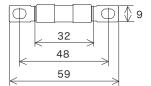
59


Scale: 1/2 (mm)

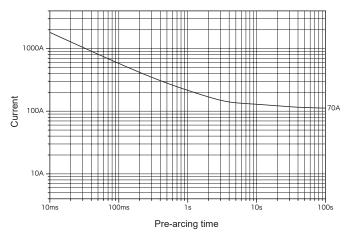
Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	c 🔊 us	40 A	4500 4	PF	75 K or less at 1.0 <i>I</i> N	1.0 / _N until temperature stabilization occurs	Within 4 min at 2.0 <i>I</i> _N
	PS E	50 A 60 A	1500 A	PF 0.7–0.8	At 1.15 <i>I</i> _N , 140 K or less at the center, 75 K or less at the contact	1.3 / _N until constant temperature is obtained on each part	Within 60 min at 1.6 / _N Within 4 min at 2.0 / _N

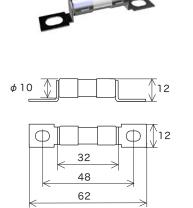
*1: Please contact your local SOC sales representative for rated currents which are not listed.


AC450VBL1030C


Representative pre-arcing time-current characteristics

RoHS-compliant

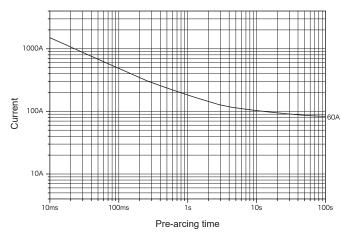

Pb free



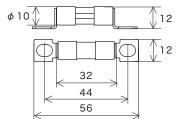
Scale: 1/2 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Min. breaking current	Temp. rise	Current carrying capacity	Overload operation
AC 450 V	-	60 A	500 A	Resistive circuit	2.0 / _N	150 K or less at 1.0 <i>I</i> _N	1.0 / _N until temperature stabilization occurs	Within 2 min at 2.0 <i>I</i> _N

Scale: 1/2 (mm)

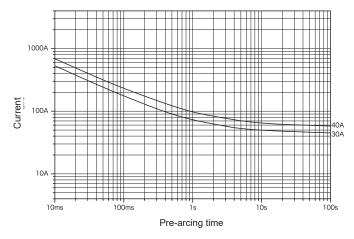

Pb free

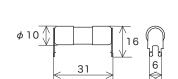
Rated voltage	Certification	Rated current (/ _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
DC 72 V	_	50 A 70 A	1000 A	Resistive circuit	75 K or less at 1.0 / _N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 2 min at 2.0 / _N

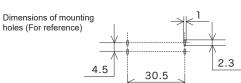

*1: Please contact your local SOC sales representative for rated currents which are not listed.

DC500VBL1030F

Representative pre-arcing time-current characteristics

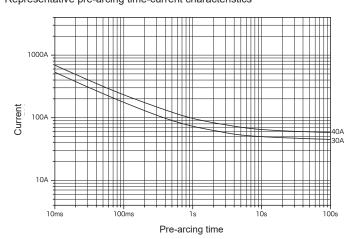



RoHS-compliant



Scale: 1/2 (mm)

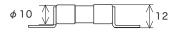
Rated voltage	Certification	Rated current (/ _N) *1	Rated breaking current		Min. breaking current	Temp. rise	Current carrying capacity	Overload operation
DC 500 V	-	60 A	500 A	Resistive circuit	5.0 / _N	25 K or less at 0.5 <i>I</i> N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 1 s at 5.0 <i>I</i> _N

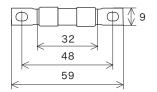

Scale: 1/2 (mm)

Rated voltage	Certification	Rated current (/ _N) *1	Rated breaking current		Min. breaking current	Temp. rise	Current carrying capacity	Overload operation
DC 500 V			1000 A					Within 2 min at 2.0 <i>I</i> _N
AC 500 V	c AN us	5 A–50 A	500 A	Resistive circuit	2.0 / _N	150 K or less at 1.0 <i>I</i> _N	1.0 <i>I</i> _N until temperature stabilization occurs	
DC 500 V	_	5 A–40 A	2000 A					

*1: Please contact your local SOC sales representative for rated currents which are not listed.

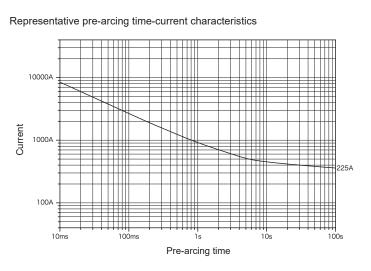
500VBL1030A

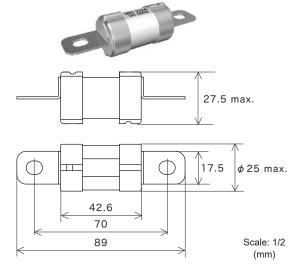

Representative pre-arcing time-current characteristics

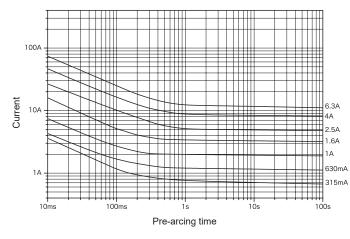


RoHS-compliant

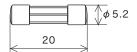
Pb free



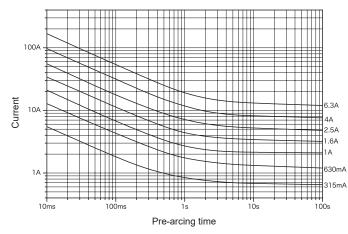



Scale: 1/2 (mm)

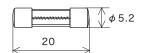
Rated voltage	Certification	Rated current (/ _N) *1	Rated breaking current		Min. breaking current	Temp. rise	Current carrying capacity	Overload operation
DC 500 V			1000 A			At 1.0 / _N		
AC 500 V	c 714 us 5 A–50	5 A-50 A	500 A	Resistive circuit	2.0 / _N	5 A–25 A 100 K or less 30 A 120 K or less	stabilization	Within 2 min at 2.0 <i>I</i> _N
DC 500 V	-	5 A-40 A	2000 A			35 A–50 A 150 K or less	occurs	



Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Min. breaking current	Temp. rise	Overload operation
DC 500 V	_	225 A	2000 A	Resistive circuit	5.0 / _N	50 K or less at 0.5 / _N	0.05 s–1 s at 5.0 / _N



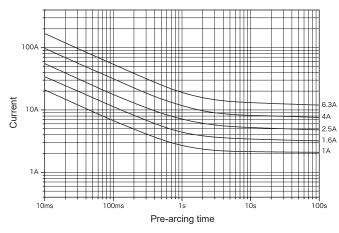
Scale: 1/1 (mm)

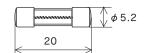

Rated voltage	Certification	Rated current (I _N)	Rated breaking current		Endurance test	Pre-arcing time- current characteristics
AC250V	S S	80 mA 100 mA 125 mA 160 mA 200 mA 250 mA 315 mA 400 mA 500 mA 630 mA 1 A 1.25 A 1.6 A 2 A 2.5 A 3.15 A 4 A 5 A 6.3 A	35 A or 10 <i>I</i> N, whichever is greater	Resistive circuit	*1	*2

*1: After 100 cycles of 1.2 I_N 1 h on / 15 min off, 1.5 I_N is passed through the fuse for 1 h. *2: Rated current 2.1 I_N 2.75 I_N 4.0 I_N

2:	Rated current	2.1 / _N	2.75 <i>I</i> N	4.0 <i>I</i> N	10 <i>I</i> N
	80 mA, 100 mA	Within 30 min	0.01 s–0.5 s	0.003 s–0.1 s Within 0.02	
	125 mA–6.3 A	wiumin 30 min	0.05 s–2 s	0.01 s–0.3 s	within 0.02 S

Scale: 1/1 (mm)

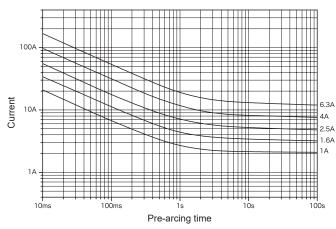

Rated voltage	Certification	Rated current (I _N)		Rated breaking current		Test at elevated temperature	Pre-arcing time-current characteristics
AC 250 V		315 mA 400 mA 500 mA 630 mA 800 mA 1 A 1.25 A 1.6 A 2 A 2.5 A 3.15 A 4 A 5 A 6.3 A	35 A or 10 <i>I</i> _N , whichever is greater	Resistive circuit	*2	*3	*4


*1: Fuses with rated currents of less than 1A are not considered electrical products per the Electrical Appliance and Material Safety Law.

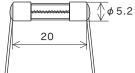
*2: After 100 cycles of 1.2 I_N 1 h on / 15 min off, 1.5 I_N is passed through the fuse for 1 h.

*3: A current of 1.1 I_N is passed through the fuse for 1 h at a temperature of 70±2 °C.

*4:	2.1 / _N	2.75 <i>I</i> N	4.0 <i>I</i> _N	10 <i>I</i> N	
	Within 2 min	0.6 s–10 s	0.15 s–3 s	0.02 s–0.3 s	

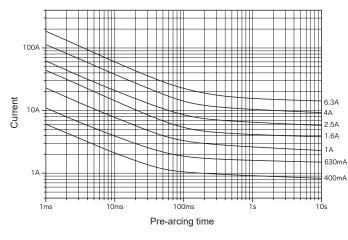

Scale: 1/1 (mm)

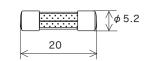
Rated voltage	Certification	Rated current (/ _N)	Rated breaking current		Temp. rise	Current carrying capacity / Endurance test	Test at elevated temperature	Pre-arcing time-current characteristics
AC 250 V	c FN [°] us	1 A 1.25 A 1.6 A 2 A 2.5 A 3.15 A	150 A	Resistive circuit	75 K or less at 1.0 I _N	1.0 <i>I</i> _N until temperature stabilization occurs	-	Within 30 min at 2.1 <i>I</i> N
	S				-	*1	*2	*3
	PS	4 A 5 A 6.3 A	100 A	PF 0.7–0.8	At 1.0 / _N 140 K or less at the center, 60 K or less at the contact	1.0 <i>I</i> _N until constant temperature is obtained on each part	_	Within 30 min at 2.1 / _N


*1: Endurance Test: After 100 cycles of 1.2 I_N 1 h on / 15 min off, 1.5 I_N is passed through the fuse for 1 h.

*2: A current of 1.1 I_N is passed through the fuse for 1 h at a temperature of 70±2 °C.

*3:	2.1 / _N	2.75 / _N	4.0 / _N	10 <i>I</i> N	
	Within 2 min	0.6 s–10 s	0.15 s–3 s	0.02 s–0.3 s	

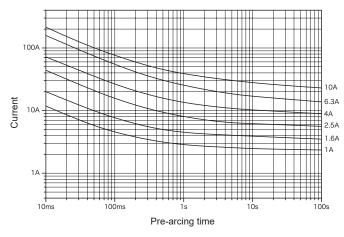

Lead wire diameter φ0.8

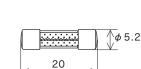

Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (/ _N)	Rated breaking current		Temp. rise	Current carrying capacity / Endurance test	Test at elevated temperature	Pre-arcing time-current characteristics
AC250V	c W us	1 A 1.25 A 1.6 A 2 A 2.5 A 3.15 A	150 A	Resistive circuit	75 K or less at 1.0 <i>I</i> _N	1.0 <i>I</i> _N until temperature stabilization occurs	-	Within 30 min at 2.1 / _N
	S		130 A		-	*1	*2	*3
	PS	4 A 5 A 6.3 A	100 A	PF 0.7–0.8	At 1.0 / _N , 140 K or less at the center, 60 K or less at the contact	1.0 <i>I</i> _N until constant temperature is obtained on each part	-	Within 30 min at 2.1 / _N

*1: Endurance Test: After 100 cycles of 1.2 I_N 1 h on / 15 min off, 1.5 I_N is passed through the fuse for 1 h. *2: A current of 1.1 I_N is passed through the fuse for 1 h at a temperature of 70±2 °C.

*3:	2.1 / _N	2.75 / _N	4.0 / _N	10 / _N		
	Within 2 min	0.6 s–10 s	0.15 s–3 s	0.02 s–0.3 s		





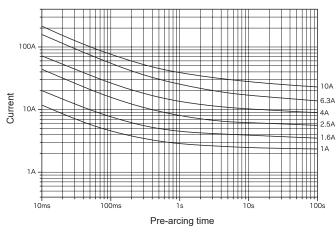
Scale: 1/1 (mm)

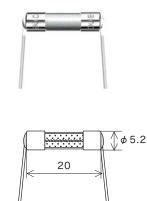
Rated voltage	Certification	Rated current (/ _N)		oreaking rent	Endurance test	Pre-arcing time- current characteristics
AC 250 V	FN E : S	400 mA 500 mA 630 mA 1 A 1.25 A 1.6 A 2 A 2.5 A 3.15 A 4 A 5 A 6.3 A	1500 A	PF 0.7–0.8	*1	*2

Ζ.	Rated current	2.1 <i>I</i> N	2.75 <i>I</i> N	4.0 <i>I</i> N	10 <i>I</i> N	
	400 mA-3.15 A	Within 30 min	0.01 s–2 s	0.003 s–0.3 s	Within 0.02 s	
	4 A–6.3 A		0.01 s–3 s	0.003 5-0.3 5	Within 0.02 S	

Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (/ _N)		preaking rent	Endurance test	Test at elevated temperature	Pre-arcing time-current characteristics
AC 250 V		1 A 1.25 A 1.6 A 2 A 2.5 A 3.15 A 4 A 5 A 6.3 A	1500 A	PF 0.7–0.8	*1	*2	*3
AC 250 V	C SU US S V PES	8 A 10 A		0.7–0.8			


After 100 cycles of 1.2 I_N 1 h on / 15 min off, 1.5 I_N is passed through the fuse for 1 h.


*1: *2: *2 A current of 1.1 I_N is passed through the fuse for 1 h at a temperature of 70±2 °C.

*3:	Rated current	2.1 / _N	2.75 / _N	4.0 / _N	10 / _N
	1 A–3.15 A	Within 30 min	0.75 s–80 s	0.095 s-5 s	
	4 A–10 A	within 30 min	0.75 S-60 S	0.15 s–5 s	0.01 s–0.15 s

***4**: 1 A–6.3 A Pb free

8 A-10 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

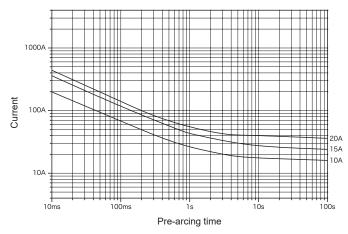
Lead wire diameter φ 0.8 (1 A–6.3 A) φ 1.0 (8 A–10 A)

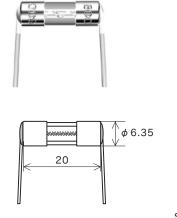
Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (/ _N)	Rated breaking current		Endurance test	Test at elevated temperature	Pre-arcing time-current characteristics
AC 250 V	C SUS S C C C C C C C C C C C C C C C C C	1 A 1.25 A 1.6 A 2 A 2.5 A 3.15 A 4 A 5 A 6.3 A 8 A 10 A	1500 A	PF 0.7–0.8	*1	*2	*3

*1: After 100 cycles of 1.2 $I_{\rm N}$ 1 h on / 15 min off, 1.5 $I_{\rm N}$ is passed through the fuse for 1 h.

*2: *3: A current of 1.1 I_N is passed through the fuse for 1 h at a temperature of 70±2 °C.


* 3:	Rated current	Rated current 2.1 / _N		4.0 / _N	10 / _N	
	1 A–3.15 A	Within 30 min	0.75 s–80 s	0.095 s–5 s	0.01 s–0.15 s	
	4 A–10 A	Wiulin 30 min	0.75 5-60 5	0.15 s–5 s		


*4: 1 A–6.3 A Pb free 8 A-10 A

This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

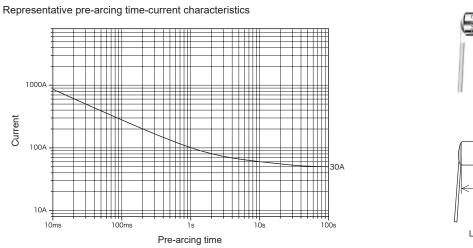
RoHS-compliant*2

Representative pre-arcing time-current characteristics

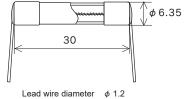
Lead wire diameter ϕ 1.2

Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
A 0.050.14	c FN ° us	4.4. 00.4	100.4	PF	75 K or less at 1.0 <i>I</i> N	1.0 / _N until temperature stabilization occurs	Within 2 min at 2.0 / _N
AC 250 V	PS	- 1 A–20 A	100 A	0.7–0.8	At 1.15 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.3 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.6 / _N Within 2 min at 2.0 / _N


*1: Customer-requested rated current values can be supplied from within the given range.

*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

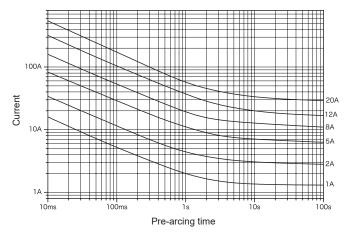

DC125VTLKR

Inrush-withstand

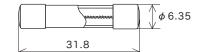
Pb free*2

RoHS-compliant*2

Scale: 1/1 (mm)


Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
DC 125 V	c RN ° us	800 mA–35 A	1000 A	Resistive circuit	110 K or less at 1.0 <i>I</i> _N	1.0 <i>I</i> _N until temperature stabilization occurs	Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.


*2: 8 A or less

Pb free

Over 8 A–35 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Note: Rated currents of over 15 A–20 A Scale: 1/1 are soldered internally. (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	(h)	100 mA–15 A	10000 A	PF 0.7–0.8	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N
AC 125 V	AT	Over 15 A–20 A	10000 A	0.7–0.8	70 K or less at 1.0 <i>I</i> N	1.0 / _N for 15 min or more after temperature stabilization occurs	Within 2 min at 2.0 / _N

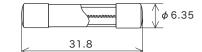
*1: Customer-requested rated current values can be supplied from within the given range.

*2: 100 mA–8 A, over 15 A–20 A Pb free Over 8 A–15 A This pro

This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

CES6 N1

Inrush-withstand


RoHS-compliant*3

Pb free*3

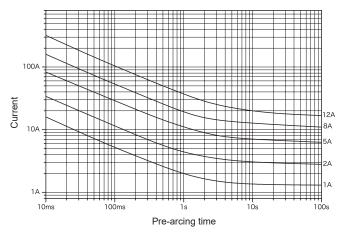
Representative pre-arcing time-current characteristics

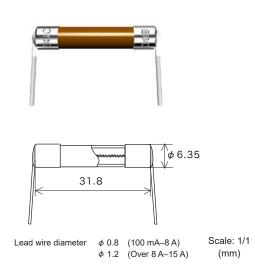
100A Current 12A 8A 10A \leq 5A 2A 54 ۱A 1A 10ms 100ms 10s 1s 100s Pre-arcing time

<u>Š</u>

Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	U. 🕼	100 mA–15 A	10000 A	PF	70 K or less at 1.1 <i>I</i> N	1.1 / _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N
AC 125 V	PS *2	100 MA-13 A	500 A	0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 / _N until constant temperature is obtained on each part	


*1: Customer-requested rated current values can be supplied from within the given range.


*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 100 mA-8 A

Pb free

Over 8 A–15 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	₩ \$	100 mA–15 A	10000 A	PF 0.7–0.8	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

Pb free

*2: 100 mA-8 A Over 8 A-15 A

This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

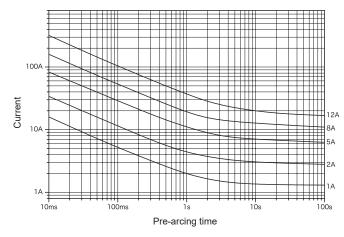
CES7 N1

Inrush-withstand

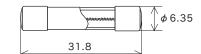
RoHS-compliant*3

Pb free*3

Representative pre-arcing time-current characteristics 100A Current 124 φ6.35 8A 10A \mathbf{i} 5A 31.8 24 Π ۱A 1A 10ms φ 0.8 (100 mA-8 A) 100ms Lead wire diameter 10s 1s 100s Scale: 1/1 φ 1.2 (Over 8 A-15 A) Pre-arcing time (mm)


Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	(h)	100 mA–15 A	10000 A	PF	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N
	PS *2	100 11A-13 A	500 A	0.7–0.8	At 1.1 / _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.


*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 100 mA-8 A Pb free

Over 8 A–15 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

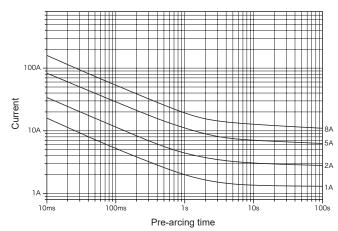
Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	(h)	100 mA–10 A	200 A	PF	70 K or less	1.1 <i>I</i> _N for 15 min or more after	Within 60 min at 1.35 / _N
AC 250 V	Ģ N°	Over 10 A–15 A	100 A	0.7–0.8	at 1.1 / _N	temperature stabilization occurs	Within 2 min at 2.0 / _N

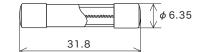
*1: Customer-requested rated current values can be supplied from within the given range. Pb free

*2: 100 mA-8 A Over 8 A-15 A

This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.


CES14 N1

Inrush-withstand


RoHS-compliant*3

Pb free*3

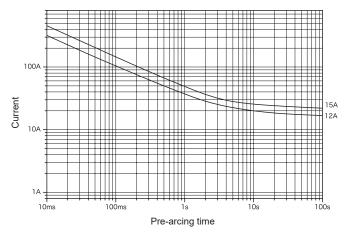
Representative pre-arcing time-current characteristics

Scale: 1/1 (mm)

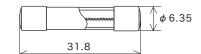
Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
AC 250 V	(h)	100 mA–10 A	200 A	PF	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N
	PS *2	100 MA-10 A	100 A	0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 / _N until constant temperature is obtained on each part	Within 2 mìn at 2.0 / _N

*1: *2:

Customer-requested rated current values can be supplied from within the given range. Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.


*3. 100 mA-8 A

Pb free


Over 8 A-10 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

RoHS-compliant*2

Representative pre-arcing time-current characteristics

Scale: 1/1 (mm)

Pb free*2

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
10.050 V		Over 10 A–15 A	100 A	PF 0.7–0.8	70 K or less at 1.1 / _N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N
AC 250 V	PS E	Over 10 A-15 A	100 A	0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 2 mìn at 2.0 <i>I</i> _N

*1: Customer-requested rated current values can be supplied from within the given range.

1s

Pre-arcing time

10s

Representative pre-arcing time-current characteristics

100ms

*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

20A

8A

2A

۱A

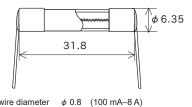
100s

12A

5A

CES15

100A


10A

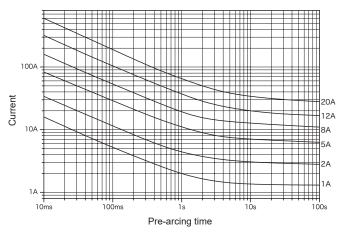
1A 10ms

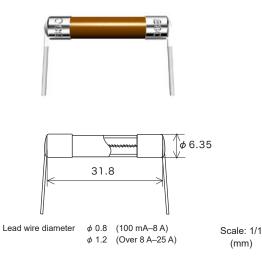
Current

Inrush-withstand

RoHS-compliant*2

Lead wire diameter φ 0.8 φ 1.2 (Over 8 A-30 A)

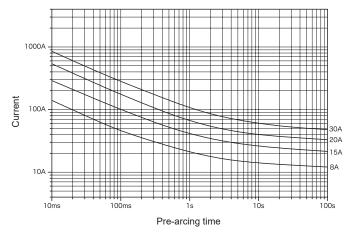

Scale: 1/1 (mm)


Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V —	91 ° ().	100 mA–15 A	200 A	PF	70 K or less at 1.1 <i>I</i> _N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 <i>I</i> N
	c RN ° us	Over 15 A–30 A	200 A	PF 0.7–0.8	-	1.0 / _N until temperature stabilization occurs	Within 2 min at 2.0 / _N

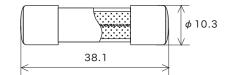
*1: Customer-requested rated current values can be supplied from within the given range.

*2: 100 mA-8 A, over 15 A-25 A Pb free

Over 8 A-15 A, over 25 A-30 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.


Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
AC 250 V	FL 6.	100 mA–15 A	200 A		70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	
	c AN [®] us	Over 15 A–25 A	200 A	PF 0.7–0.8	-	1.0 <i>I</i> _N until temperature stabilization occurs	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N
	PS *2	100 mA–25 A	100 A		At 1.1 / _N , 140 K or less at the center, 60 K or less at the contact	1.1 / _N until constant temperature is obtained on each part	

*1: Customer-requested rated current values can be supplied from within the given range.


*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 100 mA-8 A, over 15 A-25 A Pb free

Over 8 A–15 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Scale: 1/1 (mm)

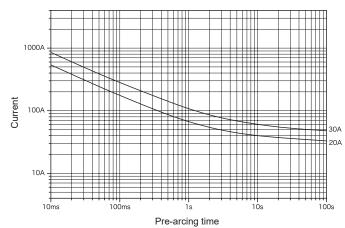
Rated voltage	Certific	ation	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	91 °	(]	1 A–30 A	10000 A	PF 0.7–0.8	120 K or less at 1.0 / _N	1.0 / _N until temperature stabilization occurs	Within 60 min at 1.35 <i>I</i> _N Within 2 min at 2.0 <i>I</i> _N

*1: Customer-requested rated current values can be supplied from within the given range.

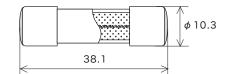
Pb free

*2: 1 A–12 A Over 12 A–30 A

This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

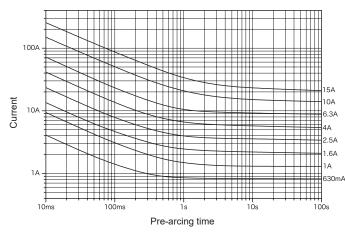

KST2 N1

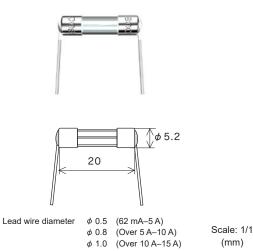
Inrush-withstand


RoHS-compliant*2

Pb free*2

Representative pre-arcing time-current characteristics


Scale: 1/1 (mm)


Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V —	FL @:		10000 A	PF	120 K or less at 1.0 / _N	1.0 / _N until temperature stabilization occurs	Within 60 min at 1.35 <i>I</i> _N Within 2 min at 2.0 <i>I</i> _N
	PS E	6.3 A–30 A	1500 A	0.7–0.8	At 1.0 / _N , 140 K or less at the center, 60 K or less at the contact	1.0 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.5 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: 6.3 A–12 A Pb free Over 12 A–30 A This pr

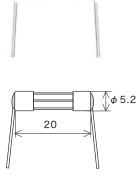
30 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	(h)	62 mA–5 A		PF	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N
	71 ° 🚯	Over 5 A–10 A	10000 4		90 K or less at 1.1 <i>I</i> N	stabilization	
	SP	Over 10 A–15 A	10000 A	0.7–0.8	75 K or less at 1.0 / _N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	

*1: Customer-requested rated current values can be supplied from within the given range. Pb free

*2: 62 mA-8 A

This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the Over 8 A-15 A RoHS Directive.


MQ1 N1

Normal-acting

Pb free*3

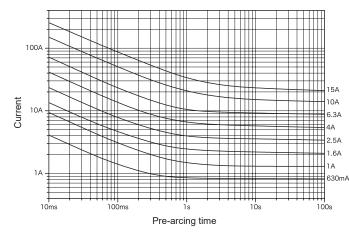
100A 10A 6.3A 4A 2.5A 1.6A 1A 630m. Current 10A 1A 630mA 10ms 100ms 10 100 Pre-arcing time

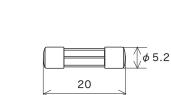
Representative pre-arcing time-current characteristics

Lead wire diameter φ 0.5 (62 mA-5 A) \$\$\phi\$ 0.8 (Over 5 A-10 A)

RoHS-compliant*3

Scale: 1/1 (mm)


Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	(h) 🚯	62 mA–5 A	10000 A		70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N
	71 ° 🕀	Over 5 A–10 A	10000 A	PF	90 K or less at 1.1 <i>I</i> N	temperature stabilization occurs	
	PS *2	62 mA–10 A	500 A	0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 / _N until constant temperature is obtained on each part	


*1: Customer-requested rated current values can be supplied from within the given range.
 *2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 62 mA-8 A

Pb free

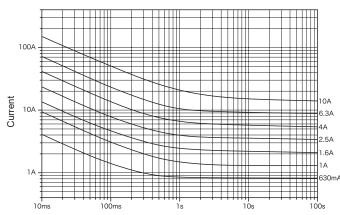
Over 8 A-10 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	(h)	62 mA–5 A		PF 0.7–0.8	70 K or less at 1.1 <i>I</i> N	1.1 I _N for 15 min or more after	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N
	71 ° ()])	Over 5 A–10 A	10000 A		90 K or less at 1.1 <i>I</i> N	temperature stabilization occurs	
	€₿ [÷]	Over 10 A–15 A	10000 A		75 K or less at 1.0 <i>I</i> N	1.0 / _N for 15 min or more after temperature stabilization occurs	

*1: Customer-requested rated current values can be supplied from within the given range.
 *2: 62 mA-8 A Pb free

2. 62 MA-6 A Over 8 A-15 A


A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

MQ2 N1

Normal-acting

Pb free*3

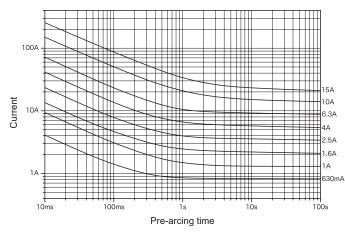
Representative pre-arcing time-current characteristics

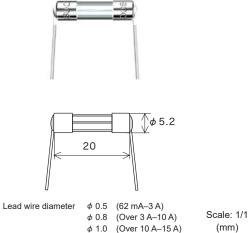
Pre-arcing time

RoHS-compliant*3

Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	(h) 🚯	62 mA–5 A	10000 A		70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after	
	FL 🚯	Over 5 A–10 A	10000 A	PF	90 K or less at 1.1 <i>I</i> N	temperature stabilization occurs	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N
	PS *2	62 mA–10 A	500 A	0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 / _N until constant temperature is obtained on each part	


*1: Customer-requested rated current values can be supplied from within the given range.


*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

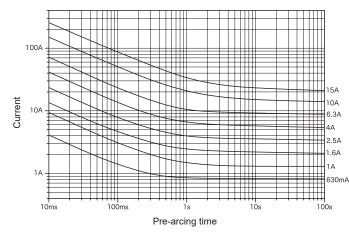
*3: 62 mA–8 A

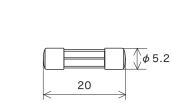
Pb free

Over 8 A–10 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

(Over 10 A-15 A) (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
	Y. S	62 mA–3 A	100 A	PF	70 K or less at 1.1 / _N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N
AC 250 V	91 °	Over 3 A–15 A	100 A	0.7–0.8	70 K or less at 1.0 <i>I</i> N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 2 min at 2.0 / _N


*1: Customer-requested rated current values can be supplied from within the given range. *2: 62 mA-8 A Pb free


This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the Over 8 A-15 A RoHS Directive.

MQ3 N1 RoHS-compliant Normal-acting Pb free Representative pre-arcing time-current characteristics 100A 10A Current *ϕ* 5.2 2.5A 1.6A 20 1A ۱A 630mA 10ms 100ms 10s 1s 100s Scale: 1/1 Lead wire diameter φ0.5 (mm) Pre-arcing time Rated breaking Rated current (I_N) Current carrying Overload Certification Rated voltage Temp. rise operation current *1 capacity

AC 250 V	(h)	62 mA–3 A	100 A	PF 0.7–0.8	70 K or less at 1.1 <i>I</i> _N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N
AC 250 V	PS *2	02 IIIA-3 A	100 A	0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 / _N until constant temperature is obtained on each part	Within 2 mìn at 2.0 / _N

*1 Customer-requested rated current values can be supplied from within the given range.

Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
	(h)	62 mA–3 A	100 4	PF	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N
AC 250 V	91 °	Over 3 A–15 A	100 A	0.7–0.8	70 K or less at 1.0 / _N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.
 *2: 62 mA-8 A Pb free

Over 8 A–15 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

MQ4 N1

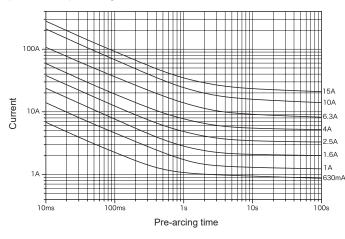
Normal-acting

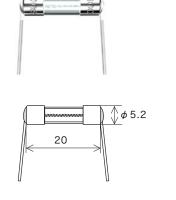
Pb

Pb free

Representative pre-arcing time-current characteristics

100A 10A Current 2.5A 1.6A 1A 630mA 500mA 1A 1A 10ms 100ms 10s 1s 100s Pre-arcing time


RoHS-compliant



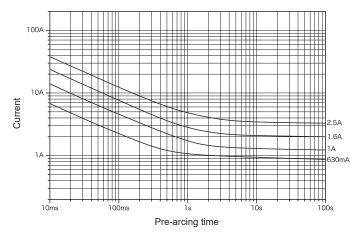
Scale: 1/1 (mm)

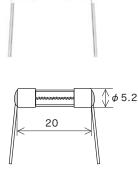
Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
	(h)	62 mA-3 A	400.4	PF	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N
AC 250 V	PS *2	02 IIIA-3 A	100 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
	(h) 🚯	100 mA–3.5 A			70 K or less		
AC 250 V		Over 3.5 A–8 A	100 A	PF	at 1.1 / _N		Within 60 min at 1.35 / _N
AC 250 V	91 °	Over 8 A–15 A	100 A	0.7–0.8	70 K or less at 1.0 / _N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 2 min at 2.0 <i>I</i> _N

*1: Customer-requested rated current values can be supplied from within the given range.


*2: 100 mA-8 A Pb free Over 8 A-15 A This pro

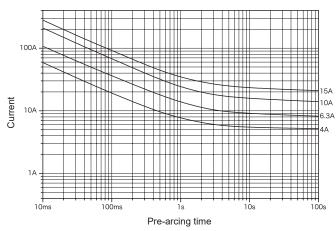

This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

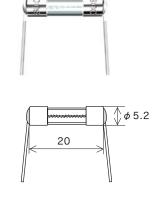
Inrush-withstand

MT3 N1

Representative pre-arcing time-current characteristics

Lead wire diameter ϕ 0.5 (100 mA–1 A) ϕ 0.8 (Over 1 A–3.5 A)


RoHS-compliant

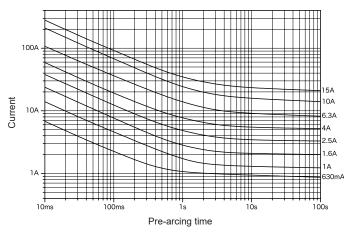

Scale: 1/1 (mm)

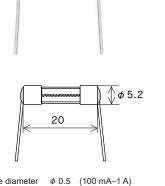
Pb free

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
	(h)	100 mA–3.5 A	100 4	PF 0.7–0.8	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N
AC 250 V	PS *2	100 MA-3.5 A	100 A	0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 2 min at 2.0 <i>I</i> _N

*1: Customer-requested rated current values can be supplied from within the given range.

 $\begin{array}{ccc} \mbox{Lead wire diameter} & \phi \ 0.8 & (\mbox{Over} \ 3.5 \mbox{ A} - 10 \mbox{ A}) \\ & \phi \ 1.0 & (\mbox{Over} \ 10 \mbox{ A} - 15 \mbox{ A}) \end{array}$

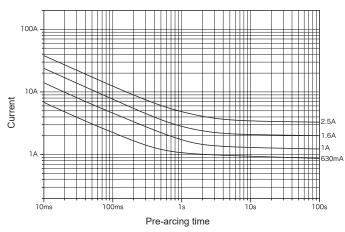

Scale: 1/1 (mm)

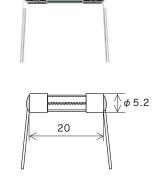

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
		Over 3.5 A–8 A	100 A	PF 0.7–0.8	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	
AC 250 V	AI *	Over 8 A–15 A			70 K or less at 1.0 <i>I</i> N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N
	PS B	Over 3.5 A–15 A			At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Over 3.5 A-8 A Pb free

Over 8 A–15 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

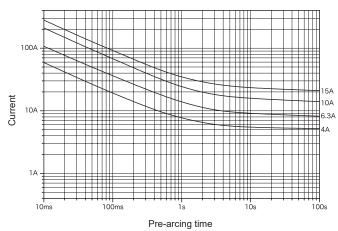

Scale: 1/1 (mm)

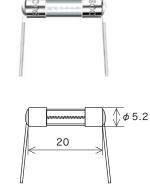

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
	(h) 🚯	100 mA–3.5 A			70 K or less	1.1 <i>I</i> _N for 15 min or more after temperature	
AC 250 V		Over 3.5 A–8 A	100 4	100 A 0.7–0.8	at 1.1 / _N	stabilization	
AC 230 V	A1 °	Over 8 A–15 A	100 A		70 K or less at 1.0 / _N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N
	(h)	100 mA–3.5 A		Resistive	70 K or less	1.1 <i>I</i> _N for 15 min or more after temperature	Within 2 min at 2.0 <i>I</i> N
DC 125 V		Over 3.5 A–8 A	500 A		at 1.1 / _N	stabilization occurs	
DO 123 V	91 °	Over 8 A–15 A		circuit	70 K or less at 1.0 <i>I</i> _N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	

*1: Customer-requested rated current values can be supplied from within the given range.

*2: 100 mA-8 A Pb free

Over 8 A–15 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.




Lead wire diameter ϕ 0.5 (100 mA–1 A) ϕ 0.8 (Over 1 A–3.5 A)

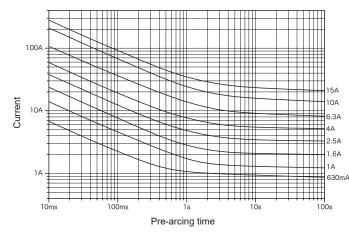
Scale: 1/1 (mm)

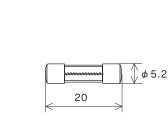
Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
AC 250 V			100 4	PF	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	
AC 250 V	P\$ *2	100 mA–3.5 A	100 A	0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N
DC 125 V	ŰL		500 A	Resistive circuit	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	

*1: Customer-requested rated current values can be supplied from within the given range.

φ 0.8 (Over 3.5 A–10 A)
 φ 1.0 (Over 10 A–15 A)

Lead wire diameter


Scale: 1/1 (mm)


Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
	۹N°	Over 3.5 A–8 A	100 A		70 K or less at 1.1 <i>I</i> _N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	
AC 250 V	A	Over 8 A–15 A		PF 0.7–0.8 Resistive	70 K or less at 1.0 <i>I</i> _N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	
	PS E	Over 3.5 A–15 A			At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N
		Over 3.5 A–8 A	500 A		70 K or less at 1.1 <i>I</i> _N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	
DC 125 V	QU Over 8 A–15 A		500 A	circuit	70 K or less at 1.0 / _N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Over 3.5 A–8 A Pb free Over 8 A–15 A This pro

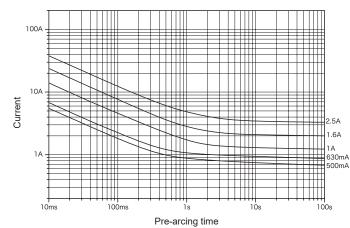
This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Scale: 1/1 (mm)

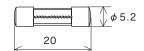
Pb free

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
		100 mA–3.5 A			70 K or less		
		Over 3.5 A–8 A	100 4	PF	at 1.1 / _N		Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N
AC 250 V	91 °	Over 8 A–15 A	100 A	0.7–0.8	70 K or less at 1.0 / _N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	

*1: Customer-requested rated current values can be supplied from within the given range.

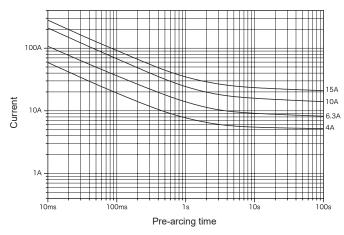

*2: 100 mA-8 A Pb free Over 8 A-15 A This pro

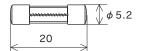
This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.


Inrush-withstand

MT4 N1

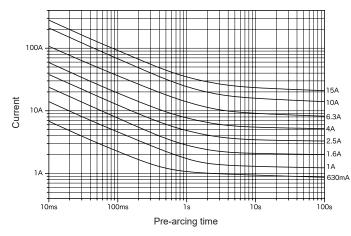
Representative pre-arcing time-current characteristics

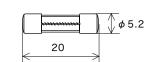

RoHS-compliant


Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
	(h)	100 mA–3.5 A	100 A	PF 0.7–0.8	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N
AC 250 V	P\$ *2	100 MA-3.5 A	100 A	0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 2 mìn at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

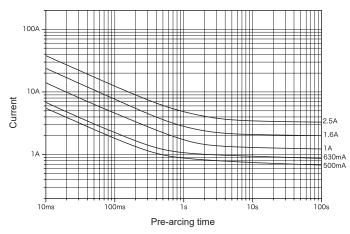

Scale: 1/1 (mm)

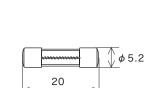

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
	FN °	Over 3.5 A–8 A	100 A	PF 0.7–0.8	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N
AC 250 V		Over 8 A–15 A			70 K or less at 1.0 <i>I</i> N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	
	P L	Over 3.5 A–15 A			At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Over 3.5 A-8 A Pb free

Over 8 A–15 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

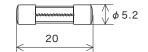

Scale: 1/1 (mm)


Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
	(b) (b) 100 mA-3.5 A			70 K or less	1.1 <i>I</i> _N for 15 min or more after temperature		
AC 250 V		Over 3.5 A–8 A	100 A PF	at 1.1 / _N	stabilization occurs		
AG 250 V	91 °	Over 8 A–15 A	100 A	0.7–0.8	70 K or less at 1.0 <i>I</i> N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N Within 2 min
	(JL)	100 mA–3.5 A			70 K or less	1.1 <i>I</i> _N for 15 min or more after temperature	Within 2 mìn at 2.0 <i>I</i> _N
DC 125 V		Over 3.5 A–8 A	500 A	Resistive	at 1.1 <i>I</i> N	stabilization occurs	
	Я)°	Over 8 A–15 A	0007	circuit	70 K or less at 1.0 <i>I</i> N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	

*1: Customer-requested rated current values can be supplied from within the given range.

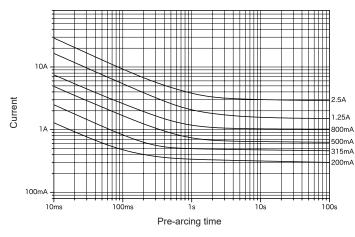
*2: 100 mA–8 A Pb free

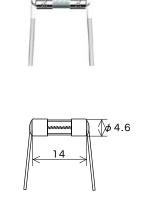
Over 8 A–15 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.


Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
AC 250.14		100 A	PF 0.7–0.8	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs		
AC 250 V	PS *2	100 mA–3.5 A	100 A	0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at t he contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 <i>I</i> _N Within 2 min at 2.0 <i>I</i> _N
DC 125 V	(H)		500 A	Resistive circuit	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	

*1: Customer-requested rated current values can be supplied from within the given range.


Scale: 1/1 (mm)


Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
	AD .	Over 3.5 A–8 A	100 A		70 K or less at 1.1 <i>I</i> _N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	
AC 250V	714	Over 8 A–15 A		PF 0.7–0.8	70 K or less at 1.0 <i>I</i> _N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	
	PS E	Over 3.5 A–15 A			At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 <i>I</i> _N Within 2 min at 2.0 <i>I</i> _N
		Over 3.5 A–8 A	500 A		70 K or less at 1.1 <i>I</i> _N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	
DC 125V	QVer 8 A–15 A		500 A	circuit	70 K or less at 1.0 / _N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Over 3.5 A–8 A Pb free Over 8 A–15 A This pro

This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Lead wire diameter ϕ 0.8

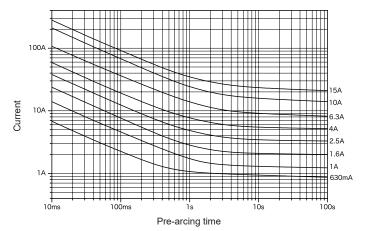
Scale: 1/1 (mm)

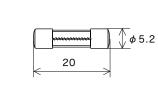
Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	(h)	100 mA–3 A	10000 A	PF 0.7–0.8	70 K or less at 1.1 / _N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

MT8

Inrush-withstand RoHS-compliant


Pb free


Representative pre-arcing time-current characteristics 10A Ħ Current 2.5A Τ -----1 25A ' TTH 1A 800mA *∱φ* 4.6 500mA 315mA 200mA Ħ 14 Π 100mA ^ ≢ 10ms 100ms 10s 100s 1s Scale: 1/1 Pre-arcing time (mm) Rated breaking Overload Rated current (IN) Current carrying Rated voltage Certification Temp. rise ۴1 current capacity operation

 Rated voltage
 Certification
 Rated current (/_N)
 Rated breaking current
 Temp. rise
 Current carrying capacity
 Overload operation

 AC 125 V
 U
 Image: Current carrying current
 100 mA–3 A
 10000 A
 PF 0.7–0.8
 70 K or less at 1.1 /_N
 1.1 /_N for 15 min or more after temperature stabilization occurs
 Within 60 min at 1.35 /_N

*1: Customer-requested rated current values can be supplied from within the given range.

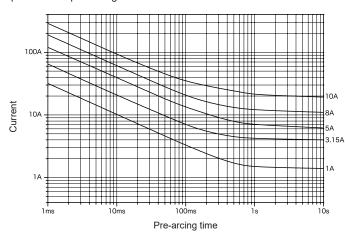
Scale: 1/1 (mm)

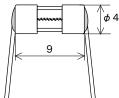
Pb free

Maximum working voltage	Certification	Rated current (<i>I</i> _N) *1	Maximum breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 42 V DC 42 V	_	100 mA–20 A	100 A	Resistive circuit	70 K or less at 1.0 <i>I</i> N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: 100 mA–8 A Pb free Over 8 A–20 A This pro


This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.


PNT5

Protector

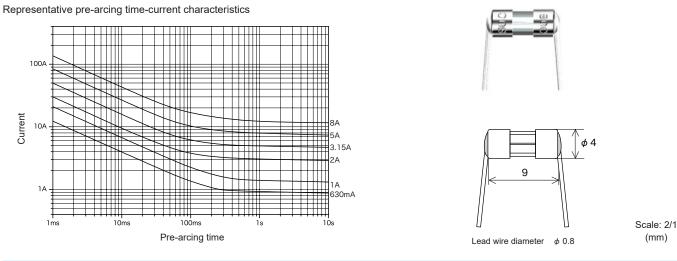
Inrush-withstand

Representative pre-arcing time-current characteristics

φ0.8

Lead wire diameter

RoHS-compliant


Scale: 2/1 (mm)

Maximum working voltage	Certification	Rated current (<i>I</i> _N) *1		n breaking rrent	Temp. rise	Current carrying capacity	Overload operation
DC 100 V	_	100 mA–10 A	100 A	Resistive circuit	75 K or less at 1.0 / _N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 s at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

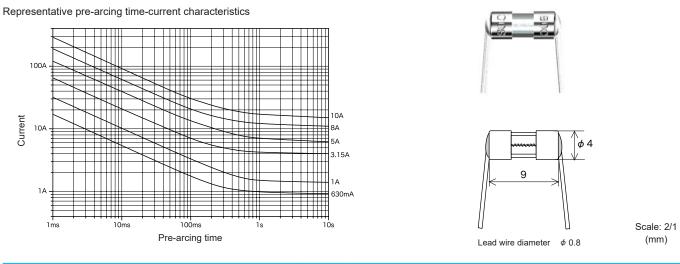
Quick-acting

RoHS-compliant*2

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	(H)	62 mA–10 A	50 A	PF 0.7–0.8	70 K or less at 1.0 <i>I</i> _N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 10 min at 1.5 / _N Within 60 s at 2.0 / _N
AC 125 V	S₽°	62 MA-10 A	50 A	PF 0.95–1			

*1: Customer-requested rated current values can be supplied from within the given range.

*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.


NQ3

Representative pre-arcing time-current characteristics 100A Current 10A 8A 10A φ4 4A 2.5A 9 1.25A 1A 1ms 10ms 100ms 1s 10s Scale: 2/1 (mm) Pre-arcing time Lead wire diameter φ0.8

Rate	d voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
		A L	60 40 4	50.4	Resistive circuit	70 K or less	0 K or less at 1.0 / _N for 15 min or more after temperature stabilization Within 10 min at 1.5 / _N Within 60 s	
AC	AC 250 V	۲. ۲	62 mA–10 A	50 A	PF 0.95–1	at 1.0 / _N	stabilization occurs	

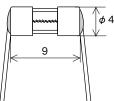
*1: Customer-requested rated current values can be supplied from within the given range.

*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V		100 mA–10 A	50 A	PF 0.7–0.8	70 K or less	1.0 <i>I</i> _N for 15 min or more after	Within 10 min at 1.5 / _N Within 60 s 2.0 / _N
	€ ₽°	100 MA-10 A	50 A	PF 0.95–1	at 1.0 <i>I</i> _N	temperature stabilization occurs	

*1: Customer-requested rated current values can be supplied from within the given range.

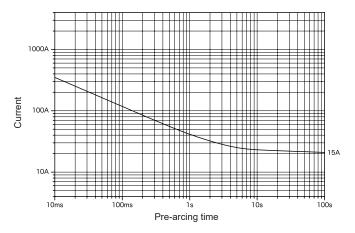
*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

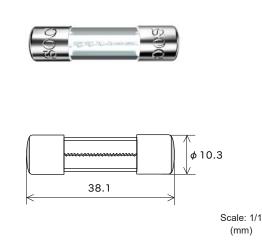

NT3

Representative pre-arcing time-current characteristics 100A \square -110A Current 10A 8A 8A 4A 2.5A .25A 1A 1ms 10ms 100ms 1s Pre-arcing time

Inrush-withstand

RoHS-compliant*2


Lead wire diameter ϕ 0.8


Scale: 2/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
A.C. 250V	A L	100 - 0 10 0	FOA	Resistive circuit	it 70 K or less or more after	Within 10 min at 1.5 / _N	
AC 250V	۲. ۲	100 mA–10 A	50A	PF 0.95–1	at 1.0 / _N	temperature stabilization occurs	Within 60 s 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Current carrying Rated breaking Overload Rated current (IN) Rated voltage Certification Temp. rise capacity current operation 1.1 *I*_N for 15 min or more after temperature Within 60 min at 1.35 *I*_N Within 2 min at 2.0 *I*_N PF 0.7–0.8 70 K or less (VL AC 125 V 3 A-15 A 10000 A at 1.1 /_N stabilization occurs

*1: Customer-requested rated current values can be supplied from within the given range.

*2: 3 A–12 A Over 12 A–15 A

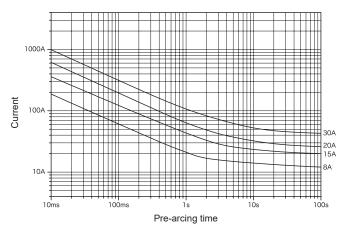
Pb free This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

SKM7

Inrush-withstand

Ind RoHS-compliant*2

Pb free*2


Representative pre-arcing time-current characteristics 1000A $\mathbf{\times}$ $\overline{}$ Current 100A 30A 20A 15A φ10.3 10A 38.1 10A 10ms 100ms 10s 1s 100s Scale: 1/1 Lead wire diameter ϕ 1.2 Pre-arcing time (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
AC 250 V	91 ° 🐠	100 mA–30 A	1500 A	PF 0.7–0.8	75 K or less at 1.0 / _N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 <i>I</i> _N Within 2 min at 2.0 <i>I</i> _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: 100 mA–12 A Pb free Over 12 A–30 A This pr

A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

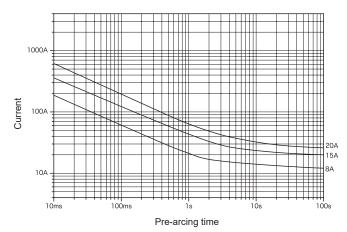
Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
AC 250 V	FL ° ();	100 mA–30 A	1000 A	Resistive circuit	100 K or less at 1.0 <i>I</i> _N	1.0 / _N until temperature stabilization occurs	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

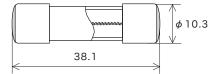
*1: Customer-requested rated current values can be supplied from within the given range. *2: 100 mA-12 A Pb free

*2: 100 mA-12 A Over 12 A-30 A

This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

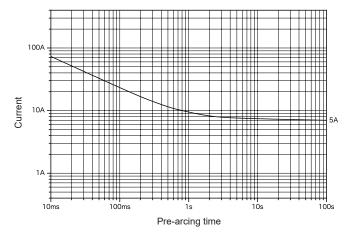

SKM10 N1

Inrush-withstand


RoHS-compliant*2

Pb free*2

Representative pre-arcing time-current characteristics


Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
A.C. 250. V	FL (),	4 4 05 4	1000 A	Resistive circuit	100 K or less at 1.0 <i>I</i> _N	1.0 / _N until temperature stabilization occurs	Within 60 min at 1.35 / _N
AC 250 V	(PS) E	1 A–25 A	100 A	PF 0.7–0.8	At 1.1 / _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 2 min at 2.0 <i>I</i> _N

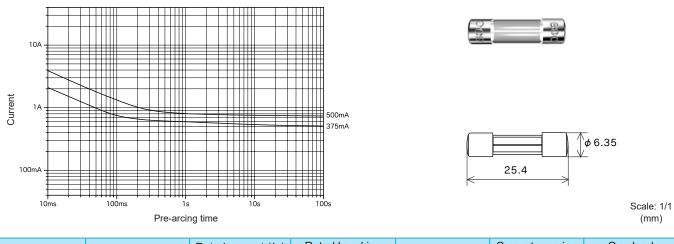
*1: Customer-requested rated current values can be supplied from within the given range.

*2: 1 A–12 A Pb free Over 12 A–25 A This pr

25.4 This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

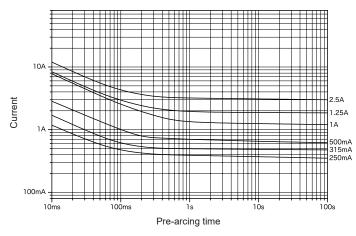
Scale: 1/1 (mm)

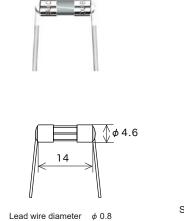
Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	(h) (f)	80 mA–6 A	10000 A	PF 0.7–0.8	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 <i>I</i> _N Within 2 min at 2.0 <i>I</i> _N


*1: Customer-requested rated current values can be supplied from within the given range.

SL4

Normal-acting RoHS-compliant


Pb free

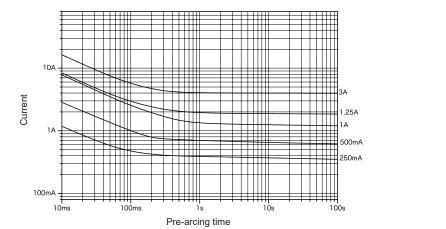

Representative pre-arcing time-current characteristics

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	(h) 🚯	80 mA–2 A	100 A	PF 0.7–0.8	70 K or less at 1.1 <i>I</i> _N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 <i>I</i> _N Within 2 min at 2.0 <i>I</i> _N

*1: Customer-requested rated current values can be supplied from within the given range.

Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	(h)	80 mA–3 A	10000 A	PF 0.7–0.8	70 K or less at 1.1 <i>I</i> _N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 <i>I</i> _N Within 2 min at 2.0 <i>I</i> _N

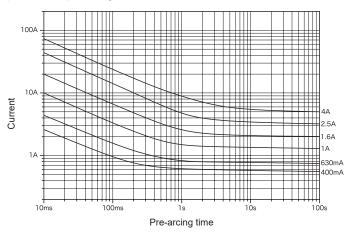

*1: Customer-requested rated current values can be supplied from within the given range.

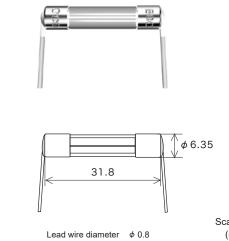
SQ8

Normal-acting RoHS-compliant

Pb free

Representative pre-arcing time-current characteristics


Scale: 1/1 (mm)


∱ϕ 4.6

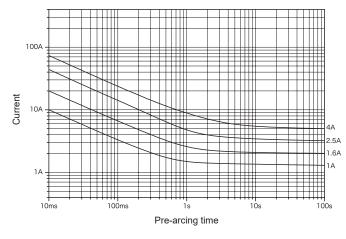
14

Rated voltage	Certifi	ication	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	(II)	<u>ج</u>	80 mA–3 A	10000 A	PF 0.7–0.8	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	(h)	50 mA–5 A	10000 A	PF 0.7–0.8	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N


*1: Customer-requested rated current values can be supplied from within the given range.

SS1 N1

Normal-acting **RoHS-compliant** Pb free Representative pre-arcing time-current characteristics 100A 10A Current 4A 4A 2.5A φ6.35 1.6A $|\top$ 1A 630mA 400mA 1A 1A 31.8 10ms 100ms 10s 1s 100s Scale: 1/1 Lead wire diameter ϕ 0.8 Pre-arcing time (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	capacity	Overload operation
AC 250 V	(H)	50 mA–5 A	10000 A	PF	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N
AC 250 V	PS *2	50 IIIA-5 A	500 A	0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 / _N until constant temperature is obtained on each part	Within 2 mìn at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	(h) 🚯	50 mA–5 A	10000 A	PF 0.7–0.8	70 K or less at 1.1 <i>I</i> _N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

1s

Pre-arcing time

10

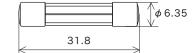
Representative pre-arcing time-current characteristics

100ms

SS2 N1

100A

1A


10ms

Current 10A Normal-acting

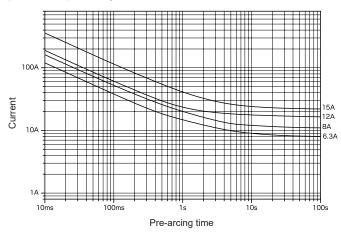
Pb free

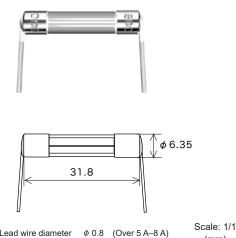
RoHS-compliant

Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
AC 250 V	(h)	50 mA–5 A	10000 A	PF	70 K or less at 1.1 / _N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N
	PS *2	50 MA-5 A	500 A	0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 2 mìn at 2.0 <i>I</i> _N

ŧ 4A


> 1A


2.5A

1.6A

100s

*1: Customer-requested rated current values can be supplied from within the given range.

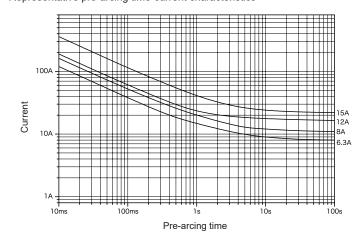
Lead wire diameter φ0.8 φ 1.0 (Over 8 A-15 A)

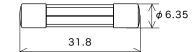
(mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	(H) 🏵	Over 5 A–8 A	200 A	PF	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N
AC 125 V	91 ()	Over 8 A–15 A	10000 A	0.7–0.8	70 K or less at 1.0 <i>I</i> N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 2 min at 2.0 <i>I</i> _N

*1: Customer-requested rated current values can be supplied from within the given range. Pb free

*2: Over 5 A-8 A Over 8 A-15 A

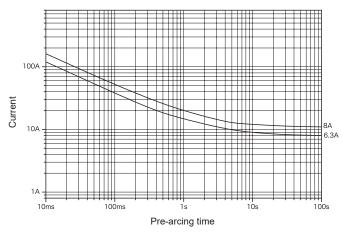

This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

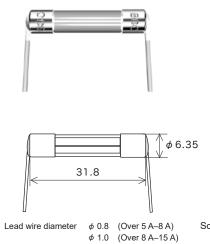

SS6

RoHS-compliant*2 Normal-acting

Pb free*2

Representative pre-arcing time-current characteristics


Scale: 1/1 (mm)

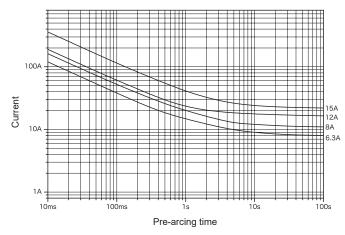

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	(h) 🚯	Over 5 A–8 A	200 A	PF	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N
AC 125 V	91 ° ()	Over 8 A–15 A	10000 A	0.7–0.8	70 K or less at 1.0 / _N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	at 1.35 <i>I</i> _N Within 2 min at 2.0 <i>I</i> _N

*1: Customer-requested rated current values can be supplied from within the given range. Pb free

*2: Over 5 A-8 A Over 8 A-15 A

This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive. 100

Scale: 1/1 (mm)

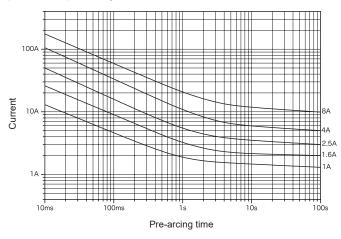

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
	(h)	Over 5 A–8 A	200 A		70 K or less at 1.1 / _N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	
AC 250 V	PS E	Over 5 A–6 A	100 A	PF	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 <i>I</i> N
AC 125 V	91 ° ()	Over 8 A–15 A	10000 A	0.7–0.8	70 K or less at 1.0 <i>I</i> N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 2 mìn at 2.0 <i>I</i> _N
AC 125 V	PS E	Over 0 A-10 A	500 A		At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	

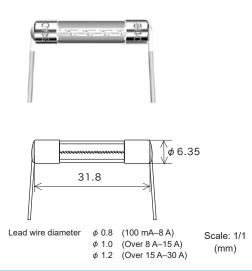
*1: Customer-requested rated current values can be supplied from within the given range.

*2: Over 5 A-8 A Pb free

Over 8 A-15 A

This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.




Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
	(l) (f)	Over EA 8 A	200 A		70 K or less at 1.1 <i>I</i> _N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	
AC 250 V	PS E	Over 5 A–8 A	100 A	PF	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 / _N
AC 125 V	FL * ()*	Over 8 A–15 A	10000 A	0.7–0.8	70 K or less at 1.0 <i>I</i> _N	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 2 mìn at 2.0 <i>I</i> _N
AU 125 V	PS E	Over 0 A-13 A	500 A		At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	

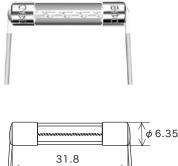
*1: Customer-requested rated current values can be supplied from within the given range. *2: Over 5 A–8 A Pb free

This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the Over 8 A-15 A RoHS Directive.

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	(H) (H)	100 mA–1 A	10000 A		70 K or less	1.1 <i>I</i> _N for 15 min or more after	
		Over 1 A–8 A		PF	at 1.1 / _N	temperature stabilization occurs	Within 60 min at 1.35 <i>I</i> N
AC 250 V	c FN us	Over 8 A–30 A	200 A	0.7–0.8	_	1.0 <i>I</i> _N until constant temperature is obtained on each part	Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range. *2: 100 mA-8 A Pb free

2: 100 mA-8 A Over 8 A-30 A

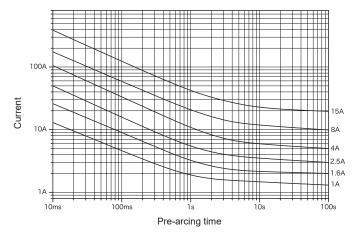

This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

ST3 N1

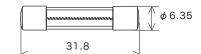
Inrush-withstand

Pb free

Representative pre-arcing time-current characteristics 100A * Current / // // 10A ЗA **>** 1A 2.5A 1.6A ۱A 1A 10ms 100ms 10 100s lsPre-arcing time


RoHS-compliant

Lead wire diameter ϕ 0.8


Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V		100 mA–1 A	10000 A	70 K or	70 K or less	1.1 I _N for 15 min or more after	
	(h) 🚯	Over 1 A–8 A	200 A	PF	at 1.1 / _N	temperature stabilization occurs	Within 60 min at 1.35 / _N
	PS *2	100 mA–1 A	500 A	0.7–0.8 At 1.1 / _N , 1.1 / _N until 140 K or less constant		Within 2 mìn at 2.0 / _N	
	PS *2	Over 1 A–8 A	100 A		at the center, 60 K or less at the contact		

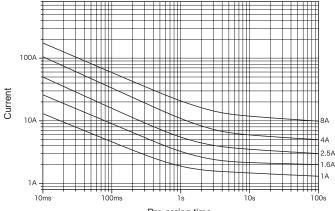
*1: Customer-requested rated current values can be supplied from within the given range.

Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V		100 mA–1 A	10000 A		70 K or less		5 min fter ure ion Within 60 min at 1.35 / _N till Within 2 min tt at 2.0 / _N ure ed
	(h) 🚯	Over 1 A–8 A		PF	at 1.1 / _N	stabilization	
AC 250 V	c W us	Over 8 A–30 A	200 A	0.7–0.8	-	1.0 / _N until constant temperature is obtained on each part	

*1: Customer-requested rated current values can be supplied from within the given range. *2: 100 mA-8 A Pb free

2: 100 mA-8 A F Over 8 A-30 A 7


This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

ST4 N1

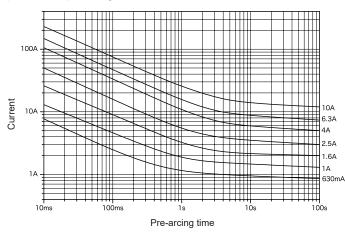
Inrush-withstand

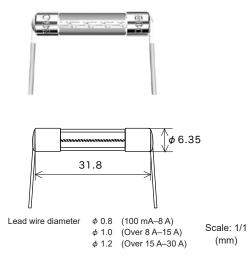
Pb free

Representative pre-arcing time-current characteristics

Pre-arcing time

S NEARARN S

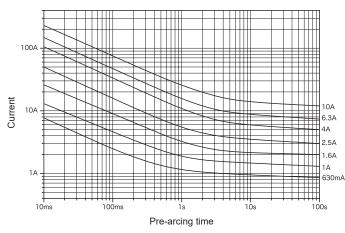

RoHS-compliant

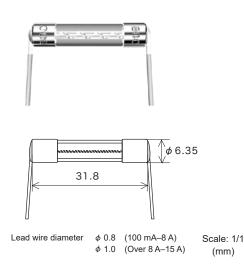


Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	100 mA-	100 mA–1 A	10000 A		70 K or less	1.1 I _N for 15 min or more after temperature	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N
	(h) 🊯	Over 1 A–8 A	200 A	PF	at 1.1 / _N	stabilization	
	PS *2	100 mA–1 A	500 A	0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center.		
	E 2	Over 1 A–8 A	100 A		60 K or less at the contact		

*1: Customer-requested rated current values can be supplied from within the given range.

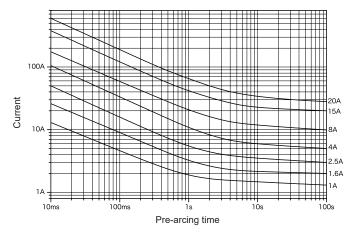



Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	(h)	100 mA–8 A	10000 A	PF 0.7–0.8	70 K or less at 1.1 <i>I</i> _N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N
					200 K or less	1.0 / _N until temperature	Within 2 min at 2.0 / _N
DC 125 V	71 ° (17)	Over 8 A–30 A	500 A	Resistive circuit	at 1.0 / _N	stabilization	

*1: Customer-requested rated current values can be supplied from within the given range. Pb free

*2: 100 mA-8 A Over 8 A-30 A

This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.


Current carrying Rated breaking Overload Rated current (IN) Rated voltage Certification Temp. rise current capacity operation 1.1 *I*_N for 15 min or more after temperature 70 K or less ŰĮ **SP**• 100 mA-8 A 10000 A at 1.1 /_N stabilization occurs 1.0 *I*_N until temperature PF 0.7–0.8 200 K or less at 1.0 *I*N AC 125 V Γ, Ľ **(SP**• Over 8 A-15 A stabilization Within 60 min at 1.35 *I*_N Within 2 min at 2.0 *I*_N occurs At 1.1 *I*_N, 140 K or less 1.1 /_N until constant 100 mA-15 A 500 A at the center, temperature *2 60 K or less is obtained at the contact on each part 1.0 *I*_N until temperature stabilization Resistive 200 K or less DC 125 V Over 8 A-15 A circuit at 1.0 /_N occurs

*1: Customer-requested rated current values can be supplied from within the given range.

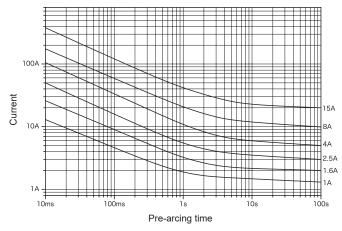
*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 100 mA-8 A Over 8 A-15 A Pb free

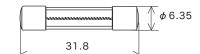
This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation	
	(h)	100 mA–8 A	10000 A	PF	70 K or less at 1.1 <i>I</i> _N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs		
AC 125 V	91 ° ()),	Over 8 A–30 A			0.7–0.8	120 K or less at 0.9 <i>I</i> _N	0.9 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N
DC 125 V	(h)	100 mA–8 A	500 A Resisti	500 A Resistive circuit	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 2 mìn at 2.0 <i>I</i> _N	
DC 125 V	91 ° ();	Over 8 A–30 A			120 K or less at 0.9 <i>I</i> N	0.9 <i>I</i> _N for 15 min or more after temperature stabilization occurs		


*1: Customer-requested rated current values can be supplied from within the given range.

RoHS Directive.


*2: 100 mA-8 A Pb fre

Over 8 A–30 A

Pb free 0 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the

Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
AC 125 V	(L)	100 mA–8 A	10000 A	PF 0.7–0.8	70 K or less at 1.1 <i>I</i> _N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	
	91 ° (),	Over 8 A–15 A	500 A		120 K or less at 0.9 <i>I</i> _N	0.9 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N
	PS *2	100 mA–15 A			At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	
DC 125 V	(L) (C)	100 mA–8 A			Resistive	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs
DC 125 V	91 ();	Over 8 A–15 A		circuit	120 K or less at 0.9 <i>I</i> _N	0.9 <i>I</i> _N for 15 min or more after temperature stabilization occurs	

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law. *3: 100 mA-8 A Pb free

*3: 100 mA–8 A Over 8 A–15 A

This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Representative pre-arcing time-current characteristics ПШ 100A Current 10A \searrow φ 6.35 >> 15.9 2A ۱A 1A 10ms 100ms 10 100 Pre-arcing time Lead wire diameter $\phi 0.8$

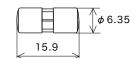
Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	91 °	80 mA–5 A	200 A	PF 0.7–0.8	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

SU2

Normal-acting RoHS-compliant*2

t*2 Pb


Pb free*2

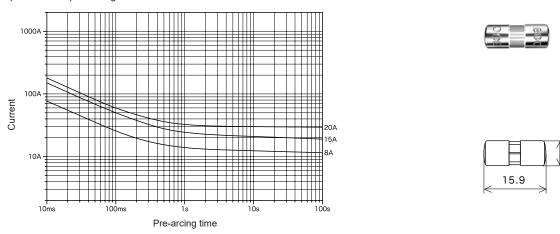
Scale: 1/1

(mm)

Representative pre-arcing time-current characteristics

100A 20A Current 12A 10A 5A 3A 2A 1A 1A 10ms 100ms 10 1s 100s Pre-arcing time

Scale: 1/1 (mm)


Rated voltage	Certification	Rated current (/ _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	<i>91</i> .	100 mA–5 A		PF 0.7–0.8	70 K or less at 1.1 / _N	1.1 / _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N
	74	Over 5 A–20 A	200 A	Resistive circuit	-	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 2 mìn at 2.0 / _N

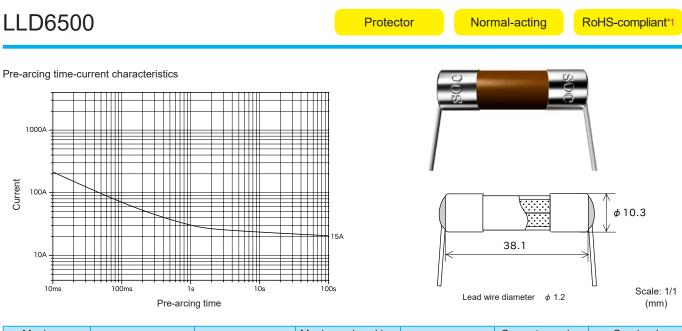
*1: Customer-requested rated current values can be supplied from within the given range.

*2: 100 mA-15 A Pb free

Over 15 A–20 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

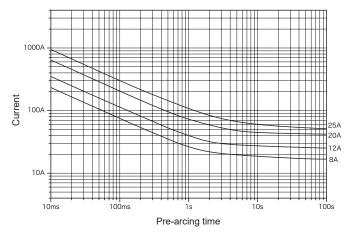
DCSU2

Scale: 1/1 (mm)

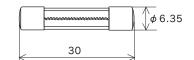

φ 6.35

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
DC 60 V	SN °	Over 5 A–20 A	100 A	Resistive circuit	-	1.0 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range. *2: Over 5 A–15 A Pb free


*2: Over 5 A–15 A Over 15 A–20 A

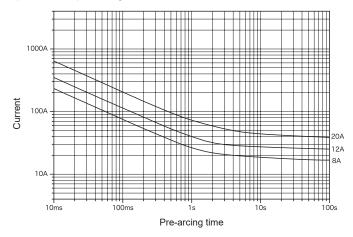
This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive

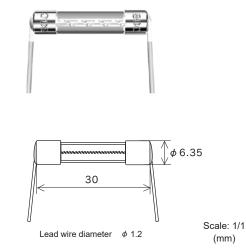


Maximum working voltage	Certification	Rated current (<i>I</i> _N)	Maximum breaking current		Temp. rise	Current carrying capacity	Overload operation
DC 600 V	-	15 A	500 A	Resistive circuit	150 K or less at 1.0 / _N	1.0 / _N until temperature stabilization occurs	Within 2 min at 2.0 <i>I</i> _N

*1: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Scale: 1/1 (mm)

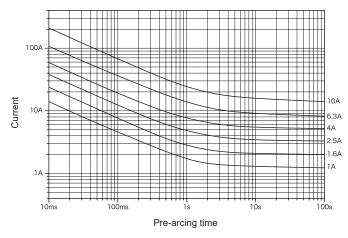

Rated voltage	Certification	Rated current (/ _N)	Rated breaking current		Endurance test	Test at elevated temperature	Pre-arcing time-current characteristics		
	8 A 10 A 12 A		250 A	Resistive circuit	*1	*2	*3		
AC 250 V	PS	15 A 20 A 25 A	100 A	PF 0.7–0.8		~2	3		
 *1: After 100 cycles of 1.2 I_N 1 h on / 15 min off, 1.5 I_N is passed through the fuse for 1 h. *2: A current of 1.1 I_N is passed through the fuse for 1 h at a temperature of 70±2 °C. 									
*3: 2.1 /N	2.75 /N	4.0 /N	10 /N						

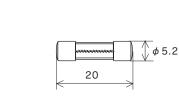

^3:	2.1 / _N	2.75 / _N	4.0 / _N	10 <i>I</i> N	
	Within 30 min	0.6 s–10 s	0.15 s–3 s	0.02 s–0.3 s	

*4: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

RoHS-compliant*4

Representative pre-arcing time-current characteristics


Rated voltage	Certification	Rated current (I _N)	Rated breaking current		Temp. rise	Current carrying capacity / Endurance test	Test at elevated temperature	Pre-arcing time-current characteristics
AC 250 V	S	8 A	250 4	Resistive circuit	-	*1	*2	*3
	c W us	10 A 12 A 15 A 20 A	250 A		75 K or less at 1.0 <i>I</i> _N	1.0 <i>I</i> _N until temperature stabilization occurs		Within 30 min
	PS E	25 A	100 A	PF 0.7–0.8	At 1.0 / _N 140 K or less at the center, 60 K or less at the contact	1.0 <i>I</i> _N until constant temperature is obtained on each part	_	at 2.1 / _N


*1: Endurance Test: After passing 0.8 IN through the fuse for 100 h, the rated current is passed through the fuse for 1 h.

*2: A current of 1.1 $I_{\rm N}$ is passed through the fuse for 1 h at a temperature of 70±2 °C.

:	2.1 / _N	2.75 / _N	4.0 / _N	10 / _N
	Within 30 min	0.6 s–10 s	0.15 s–3 s	0.02 s–0.3 s

*4: This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

RoHS-compliant

Scale: 1/1 (mm)

Pb free

(mm)

Rated voltag	e Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	(h)	100 mA–10 A	10000 A	PF 0.7–0.8	70 K or less at 1.1 <i>I</i> N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

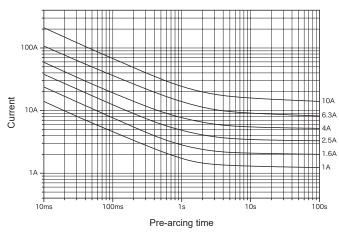
Inrush-withstand

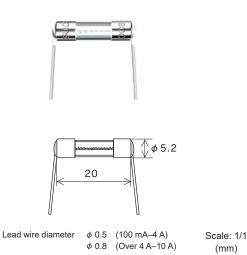
*1: Customer-requested rated current values can be supplied from within the given range.

ULTSC N1

Representative pre-arcing time-current characteristics 100A + \downarrow Current 10A 10A 6.3A 4A 2.5A φ 5.2 1.6A -----1A 20 1A 10ms 100ms 10 100s 1s Scale: 1/1 Pre-arcing time

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	(h)	100 mA–10 A	10000 A	PF	70 K or less at 1.1 <i>I</i> N	1.1 / _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N
	PS *2	100 MA-10 A	500 A	0.7–0.8	At 1.1 / _N , 140 K or less at the center, 60 K or less at the contact	1.1 / _N until constant temperature is obtained on each part	


*1: Customer-requested rated current values can be supplied from within the given range.


*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

10ms

100ms

Representative pre-arcing time-current characteristics

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	() ()	100 mA–10 A	10000 A	PF 0.7–0.8	70 K or less at 1.1 / _N	1.1 <i>I</i> _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

10

() *φ* 5.2 20

φ 0.5 (100 mA-4 A) Lead wire diameter \$\$\phi\$ 0.8 (Over 4 A-10 A)

Scale: 1/1 (mm)

Pb free

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
	(h)	100 mA–10 A	10000 A	PF	70 K or less at 1.1 <i>I</i> N	1.1 / _N for 15 min or more after temperature stabilization occurs	Within 60 min at 1.35 / _N
AC 125 V -	PS *2	100 MA-10 A	500 A	0.7–0.8	At 1.1 / _N , 140 K or less at the center, 60 K or less at the contact	1.1 / _N until constant temperature is obtained on each part	Within 2 min at 2.0 <i>I</i> _N

100s

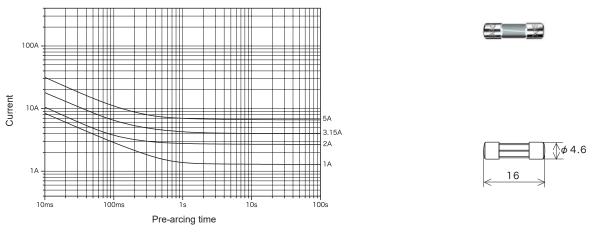
*1: Customer-requested rated current values can be supplied from within the given range.

1s

Pre-arcing time

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

RoHS-compliant*3


Pb free

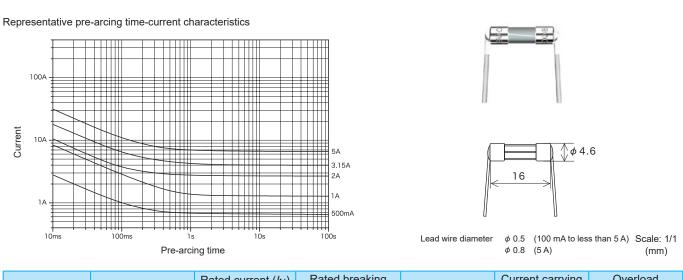
Scale: 1/1

(mm)

Representative pre-arcing time-current characteristics

A MSC

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	PS *2	100 mA–5 A	500 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

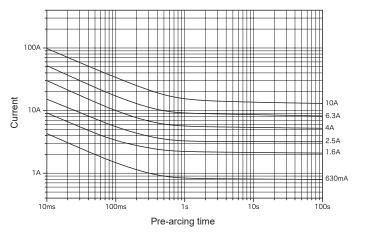

*1: Customer-requested rated current values can be supplied from within the given range.

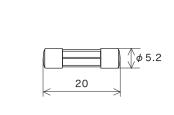
*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

A MSCR

Normal-acting

Pb free*3


Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
AC 125 V	PS to	100 mA–3 A	500 A	PF	At 1.1 <i>I</i> _N , 140 K or less	1.1 / _N until constant	Within 60 min at 1.35 <i>I</i> N
AC 125 V	PS *2	Over 3 A–5 A	100 A	0.7–0.8	at the center, 60 K or less at the contact	temperature is obtained on each part	Within 2 min at 2.0 / _N


*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 100 mA to less than 5 A Pb free

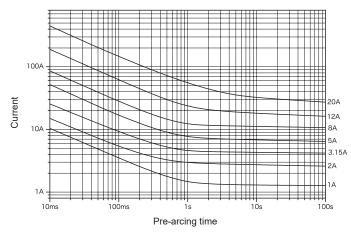
5 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Scale: 1/1 (mm)

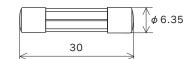
Rate	ed voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
A	C 125 V	PS *2	100 mA–10 A	500 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.


ASCR

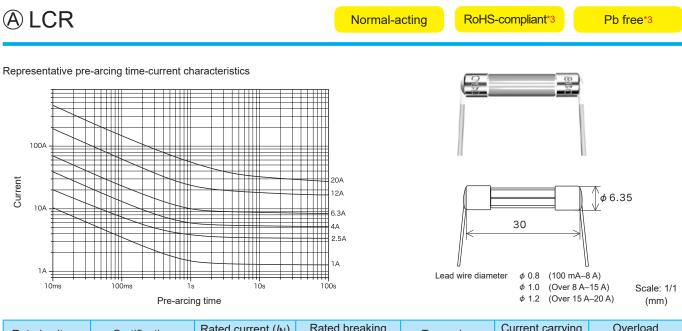
RoHS-compliant Pb free Normal-acting Representative pre-arcing time-current characteristics 100A -Current 10A 10A 6.3A **∲** 5.2 4A 2.5A 20 1A 1A 630mA 10ms 100ms 10 1s 100s Scale: 1/1 Lead wire diameter φ 0.5 (100 mA to less than 5 A) Pre-arcing time φ 0.8 (mm) (5 A-10 A)


Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation	
AC 125 V	PS *2	100 mA–5 A	500 A	PF	At 1.1 <i>I</i> _N , 140 K or less at the center.	1.1 / _N until constant temperature	Within 60 min at 1.35 / _N	
AC 125 V	PS *2	Over 5 A–10 A	100 A	0.7–0.8	60 K or less at the contact	is obtained on each part	Within 2 min at 2.0 / _N	

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

Scale: 1/1 (mm)

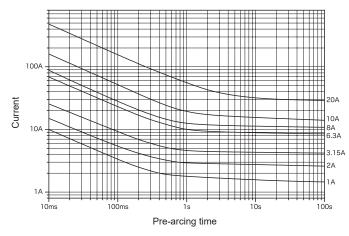

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	PS *2	100 mA–20 A	500 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

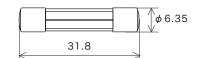
*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 100 mA-12 A Pb free

Over 12 A–20 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.


Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
AC 125 V	PS to	100 mA–15 A	500 A	PF	At 1.1 <i>I</i> _N , 140 K or less	1.1 / _N until constant	Within 60 min at 1.35 <i>I</i> N
AC 125 V	PS *2	Over 15 A–20 A	100 A	0.7–0.8	at the center, 60 K or less at the contact	temperature is obtained on each part	Within 2 min at 2.0 / _N

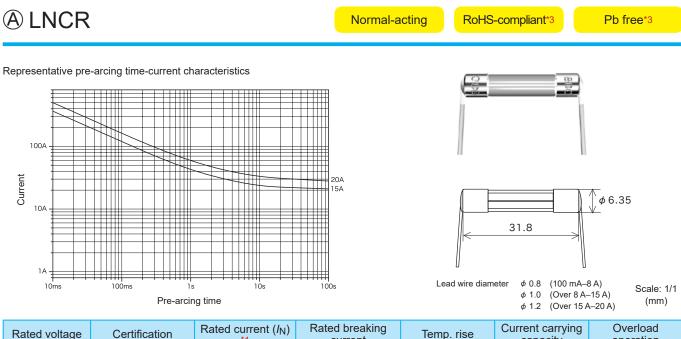
*1: Customer-requested rated current values can be supplied from within the given range.


*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 100 mA-12 A Pb free

Over 12 A–20 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Scale: 1/1 (mm)

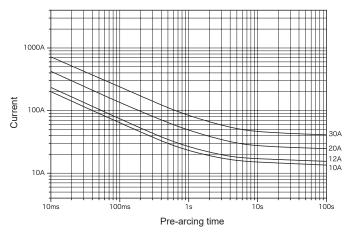

Rated volta	ge Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 \	PS *2	100 mA–20 A	500 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

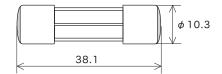
*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 100 mA-12 A Pb free

Over 12 A–20 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.


Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	PS *2	100 mA–15 A	500 A	PF	At 1.1 <i>I</i> _N , 140 K or less	1.1 / _N until constant	Within 60 min at 1.35 / _N
AC 125 V	PS *2	Over 15 A–20 A	100 A	0.7–0.8	at the center, 60 K or less at the contact	temperature is obtained on each part	Within 2 min at 2.0 / _N

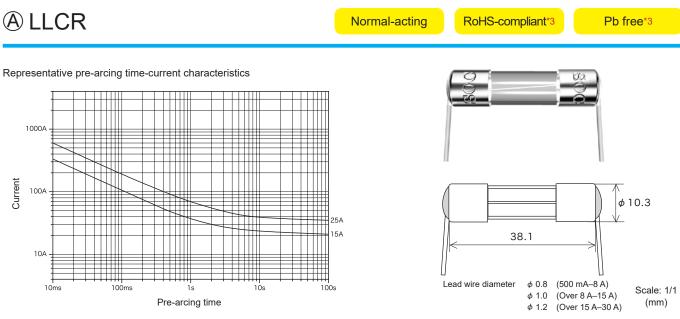
*1: Customer-requested rated current values can be supplied from within the given range.


*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 100 mA-12 A Pb free

Over 12 A–20 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Scale: 1/1 (mm)

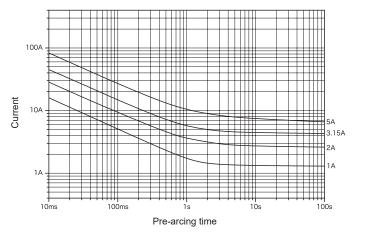

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	PS *2	500 mA–30 A	500 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

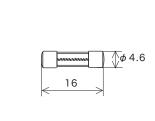
*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 500 mA-12 A Pb free

Over 12 A–30 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.


Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	PS to	500 mA–15 A	500 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less	1.1 / _N until constant	Within 60 min at 1.35 <i>I</i> N
AC 125 V	PS *2	Over 15 A–30 A	100 A		0.7–0.8	at the center, 60 K or less at the contact	temperature is obtained on each part


*1: Customer-requested rated current values can be supplied from within the given range.

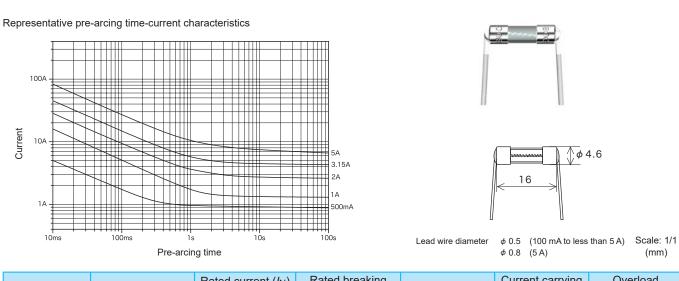
*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 500 mA-12 A Pb free

Over 12 A–30 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	PS *2	100 mA–5 A	500 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N


*1: Customer-requested rated current values can be supplied from within the given range.

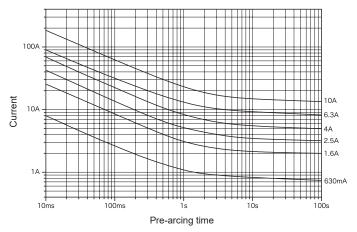
*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

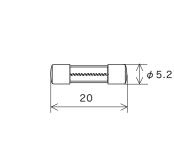
A TMSCR

Inrush-withstand RoHS-compliant*3

Pb free*3

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 105 V	PS *2	100 mA–3 A	500 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 / _N until constant	Within 60 min at 1.35 <i>I</i> N
AC 125 V		Over 3 A–5 A	100 A			temperature is obtained on each part	Within 2 min at 2.0 / _N


*1: Customer-requested rated current values can be supplied from within the given range.


*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 100 mA to less than 5 A Pb free

5 A

This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Scale: 1/1 (mm)

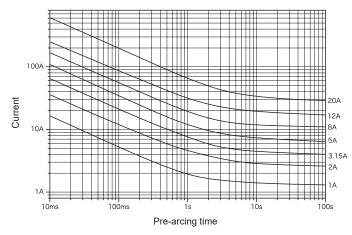
Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	PS *2	100 mA–10 A	500 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 <i>I</i> _N Within 2 min at 2.0 <i>I</i> _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

A TSCR

Inrush-withstand RoHS-compliant


Pb free

Representative pre-arcing time-current characteristics 100A \uparrow Current 10A \square 10A 6.3A ¢ 5.2 ×. 4A 2.5A 20 1A 1A 630mA 10ms 100ms 10 100s Lead wire diameter φ 0.5 (100 mA to less than 5 A) Scale: 1/1 \$\$\phi\$ 0.8 (5 A-10 A) (mm) Pre-arcing time

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation	
AC 125 V	100 mA–5 A	500 A	PF	At 1.1 <i>I</i> _N , 140 K or less	1.1 / _N until constant temperature	Within 60 min at 1.35 / _N		
AC 125 V	E 2	Over 5 A–10 A	100 A	0.7–0.8	at the center, 60 K or less at the contact	is obtained on each part	Within 2 min at 2.0 / _N	

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

Scale: 1/1 (mm)

F	Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
	AC 125 V	PS *2	100 mA–30 A	500 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 100 mA-12 A Pb free

Over 12 A–30 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

A TLCR

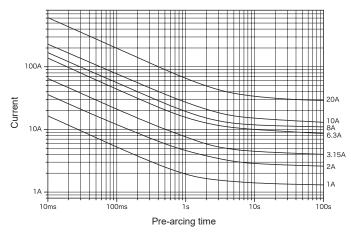
Inrush-withstand

ithstand RoHS-compliant*3

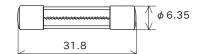
Pb free*3

Representative pre-arcing time-current characteristics 100A \searrow Current 20A 12A φ6.35 10A 6.3A \leq 4A 30 2.5A 1A 1A Lead wire diameter φ0.8 (100 mA-8 A) 10ms 100ms 10s 1s 100s Scale: 1/1 (Over 8 A-15 A) φ 1.0 Pre-arcing time (mm) \$\$\phi\$ 1.2 (Over 15 A-30 A)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	PS to	100 mA–15 A	500 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 / _N until constant	Within 60 min at 1.35 / _N
AC 125 V	PS *2	Over 15 A–30 A	100 A			temperature is obtained on each part	Within 2 min at 2.0 / _N


*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.


*3: 100 mA-12 A

Pb free

Over 12 A–30 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

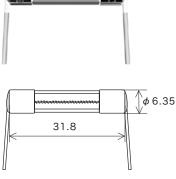
Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	PS *2	100 mA–20 A	500 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 100 mA-12 A Pb free


Over 12 A-20 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

A TLNCR

Inrush-withstand

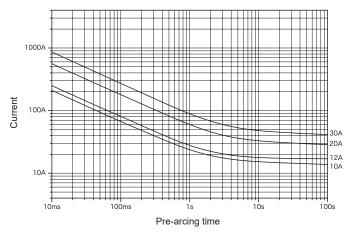
Pb free*3

Representative pre-arcing time-current characteristics 100A tt. Current 20A 15A 10A 6.3A \searrow 31.8 4A 2.5A 1.6A 1A 1A Lead wire diameter 10ms 100ms 1s 10s 100s Pre-arcing time φ 1.2

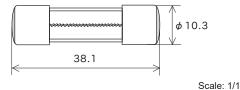
φ 0.8 (100 mA-8 A) \$\$\phi\$ 1.0 (Over 8 A-15 A) (Over 15 A-20 A)

RoHS-compliant*3

Scale: 1/1 (mm)


Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
	PS	100 mA–15 A	500 A	PF	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 / _N until constant	Within 60 min at 1.35 <i>I</i> N
AC 125 V	PS *2	Over 15 A–20 A	100 A	0.7–0.8		temperature is obtained on each part	Within 2 min at 2.0 <i>I</i> _N

*1: Customer-requested rated current values can be supplied from within the given range.


*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 100 mA-12 A Pb free

Over 12 A-20 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

(mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	PS *2	500 mA–30 A	500 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 <i>I</i> _N Within 2 min at 2.0 <i>I</i> _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 500 mA-12 A Pb free

Over 12 A-30 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

A TLLCR

Inrush-withstand

RoHS-compliant*3

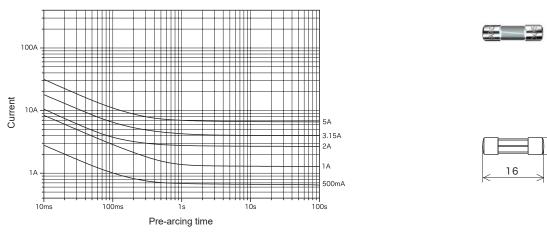
Pb free*3

Representative pre-arcing time-current characteristics 1000A Current 100A φ10.3 30A 15A 38.1 10A Lead wire diameter φ0.8 (500 mA-8 A) 10ms 100ms 109 100s Scale: 1/1 1s (Over 8 A-15 A) φ 1.0 Pre-arcing time φ 1.2 (Over 15 A-30 A)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 125 V	PS *2	500 mA–15 A	500 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 / _N until constant	Within 60 min at 1.35 <i>I</i> N
AC 125 V	E 2	Over 15 A–30 A	100 A			temperature is obtained on each part	Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.


*3: 500 mA-12 A Pb free

Over 12 A-30 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

(mm)

RoHS-compliant

Representative pre-arcing time-current characteristics

Scale: 1/1 (mm)

φ 4.6

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	PS *2	100 mA–5 A	100 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

250V A MSCR

Representative pre-arcing time-current characteristics

100ms

Normal-acting

Pb free*3

100A Current 10A 5A 3.15A 2A

İs

Pre-arcing time

105

∲ 4.6 16

RoHS-compliant*3

Scale: 1/1 Lead wire diameter ϕ 0.5 (100 mA to less than 5 A) φ0.8 (5 A)

)	(mm)	

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	PS *2	100 mA–5 A	100 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

1A

100s

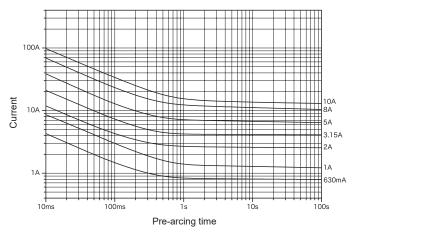
500mA

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 100 mA to less than 5 A Pb free

1A

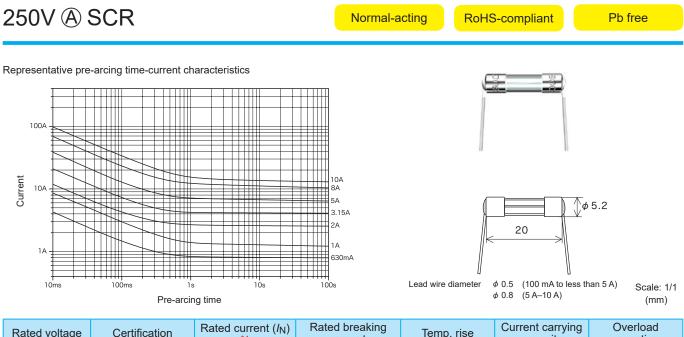

10ms

This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

5 A

20

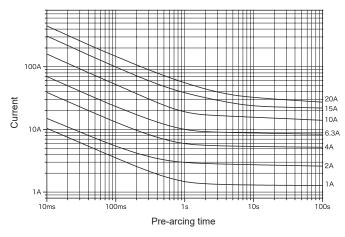
Representative pre-arcing time-current characteristics

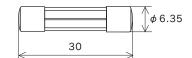

Scale: 1/1 (mm)

()¢ 5.2

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	PS *2	100 mA–10 A	100 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

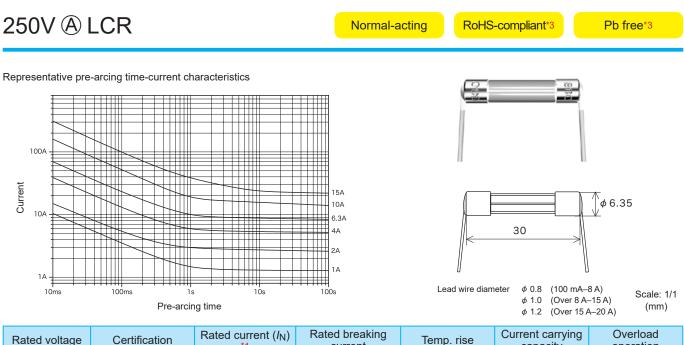

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.


Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation	
AC 250 V	PS *2	100 mA–10 A	100 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N	

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

Scale: 1/1 (mm)

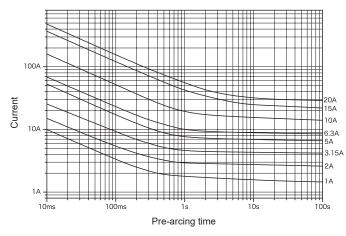

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	PS *2	100 mA–20 A	100 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 / _N until constant temperature is obtained on each part	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

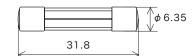
*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 100 mA-12 A Pb free

Over 12 A–20 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.


Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation	
AC 250 V	PS *2	100 mA–20 A	100 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N	

*1: Customer-requested rated current values can be supplied from within the given range.


*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 100 mA-12 A Pb free

Over 12 A–20 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Scale: 1/1 (mm)

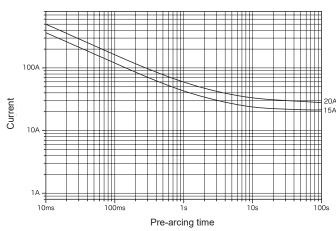
Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	PS *2	100 mA–20 A	100 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 <i>I</i> _N Within 2 min at 2.0 <i>I</i> _N

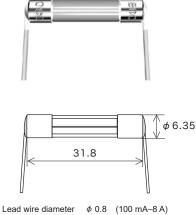
*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 100 mA–12 A Pb free Over 12 A–20 A This pr

A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.


250V A LNCR


Normal-acting

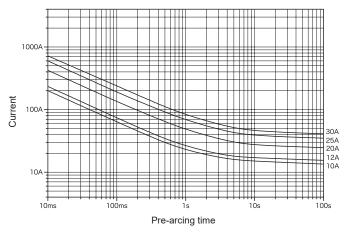
RoHS-compliant*3

Pb free*3

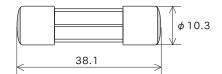
Representative pre-arcing time-current characteristics

Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	PS *2	100 mA–20 A	100 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 <i>I</i> _N Within 2 min at 2.0 <i>I</i> _N


*1: Customer-requested rated current values can be supplied from within the given range.

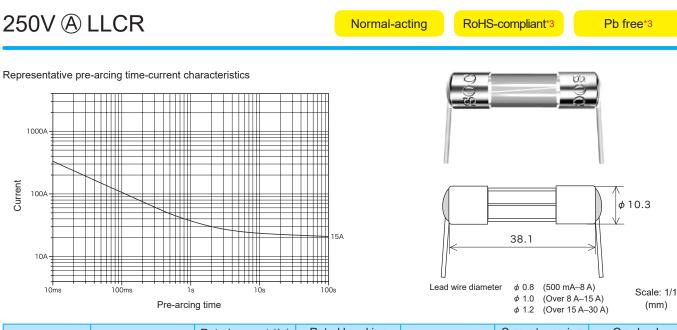
*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.


*3: 100 mA–12 A

Pb free

Over 12 A–20 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Scale: 1/1 (mm)


Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	PS *2	500 mA–30 A	100 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 / _N until constant temperature is obtained on each part	Within 60 min at 1.35 <i>I</i> _N Within 2 min at 2.0 <i>I</i> _N

*1: Customer-requested rated current values can be supplied from within the given range.

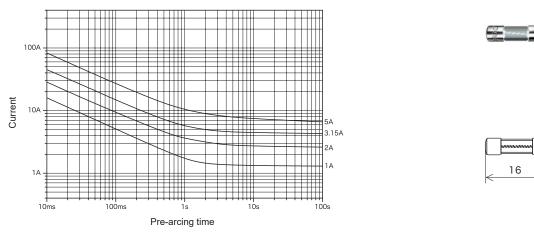
*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 500 mA–12 A Pb free Over 12 A–30 A This pr

A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	PS *2	500 mA–30 A	100 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.


*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 500 mA-12 A Pb free

Over 12 A–30 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

🗇 4.6

Representative pre-arcing time-current characteristics

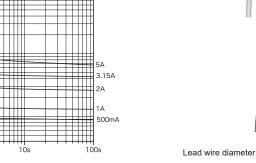
Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	PS *2	100 mA–5 A	100 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

250V A TMSCR


100A

1A

10ms

Current 10A

Representative pre-arcing time-current characteristics

Inrush-withstand

∱φ 4.6 16

 ϕ 0.5 (100 mA to less than 5 A) Scale: 1/1 φ 0.8 (5 A)

RoHS-compliant*3

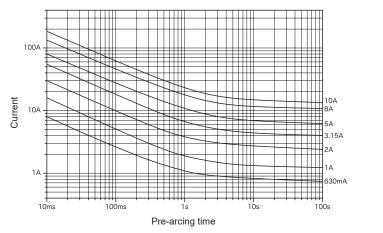
(mm)

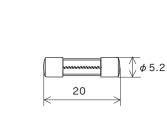
Pb free*3

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	PS *2	100 mA–5 A	100 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 / _N Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

1s

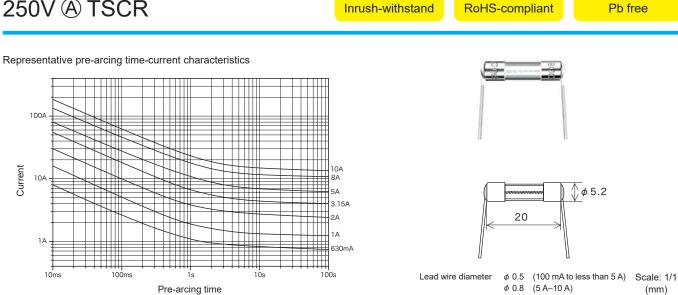

Pre-arcing time


*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 100 mA to less than 5 A Pb free

100ms

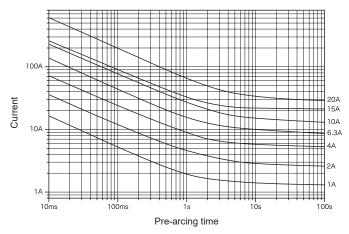
5 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.


Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	PS *2	100 mA–10 A	100 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 <i>I</i> _N Within 2 min at 2.0 <i>I</i> _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.


250V A TSCR

Rated voltage	Certification	Rated current (<i>I</i> _N) *1	Rated breaking current		Temp. rise	Current carrying capacity	Overload operation
AC 250 V	PS *2	100 mA–10 A	100 A	PF 0.7–0.8	At 1.1 <i>I</i> _N , 140 K or less at the center, 60 K or less at the contact	1.1 <i>I</i> _N until constant temperature is obtained on each part	Within 60 min at 1.35 <i>I</i> _N Within 2 min at 2.0 <i>I</i> _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

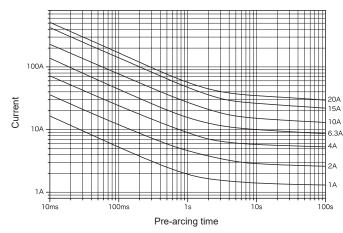
Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
AC 250 V	PS *2	100 mA–5 A	500 A	PF	At 1.1 <i>I</i> _N , 140 K or less at the center.	1.1 / _N until constant temperature	Within 60 min at 1.35 / _N
AG 200 V	PS *2	Over 5 A–30 A	100 A	0.7–0.8	60 K or less at the contact	is obtained on each part	Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 100 mA-12 A Pb free


Over 12 A–30 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

250V (A) TLCR

Inrush-withstand

Pb free*3

Representative pre-arcing time-current characteristics

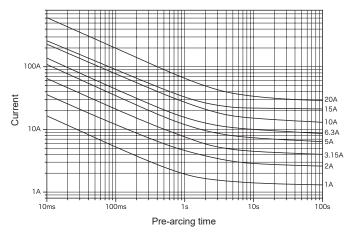
Lead wire diameter \$\$ 0.8 (100 mA-8A) \$\$ 1.0 (Over 8A-15A)

\$\$\phi\$ 1.2 (Over 15 A-30 A)

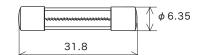
RoHS-compliant*3

Scale: 1/1 (mm)

Rated	voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
	250 V	PS to	100 mA–5 A	500 A	PF	At 1.1 <i>I</i> _N , 140 K or less at the center,	1.1 / _N until constant	Within 60 min at 1.35 / _N
AC.	230 V	PS *2	Over 5 A–30 A	100 A	0.7–0.8	60 K or less at the contact	temperature is obtained on each part	Within 2 min at 2.0 <i>I</i> _N


*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.


*3: 100 mA-12 A

Pb free

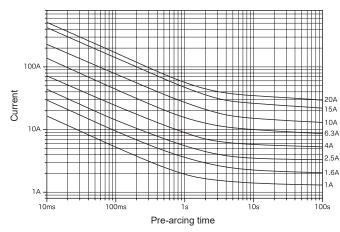
Over 12 A–30 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
AC 250 V	PS *2	100 mA–5 A	500 A	PF	At 1.1 <i>I</i> _N , 140 K or less at the center,	1.1 / _N until constant temperature	Within 60 min at 1.35 / _N
AC 250 V	E Z	Over 5 A–20 A	100 A	0.7–0.8	60 K or less at the contact	is obtained on each part	Within 2 min at 2.0 <i>I</i> _N

*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.


*3: 100 mA-12 A Pb free

Over 12 A–20 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

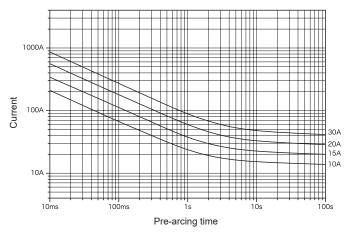
Inrush-withstand

Pb free*3

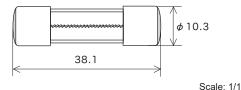
Representative pre-arcing time-current characteristics

RoHS-compliant*3

Scale: 1/1 (mm)


Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
AC 250 V	PS *2	100 mA–5 A	500 A	PF	At 1.1 <i>I</i> _N , 140 K or less at the center,	1.1 / _N until constant	Within 60 min at 1.35 <i>I</i> N
AC 250 V	E 2	Over 5 A–20 A	100 A	0.7–0.8	60 K or less at the contact	temperature is obtained on each part	Within 2 min at 2.0 / _N

*1: Customer-requested rated current values can be supplied from within the given range.


*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 100 mA-12 A Pb free Over 12 A 20 A. This product uses high molting temporature type solder containing 85% by

Over 12 A–20 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

(mm)

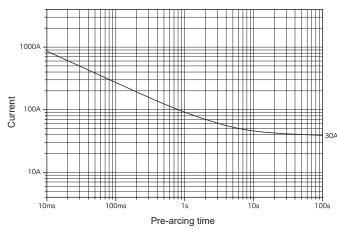
Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
AC 250 V	PS *2	500 mA–5 A	500 A	PF	At 1.1 <i>I</i> _N , 140 K or less at the center.	1.1 / _N until constant	Within 60 min at 1.35 <i>I</i> N
AC 250 V	E Z	Over 5 A–30 A	100 A	0.7–0.8	60 K or less at the contact	temperature is obtained on each part	Within 2 min at 2.0 / _N

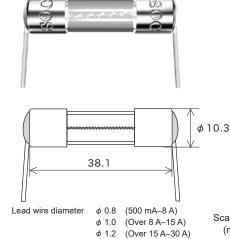
*1: Customer-requested rated current values can be supplied from within the given range.

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 500 mA-12 A Pb free

Over 12 A-30 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.


250V A TLLCR


Inrush-withstand

RoHS-compliant*3

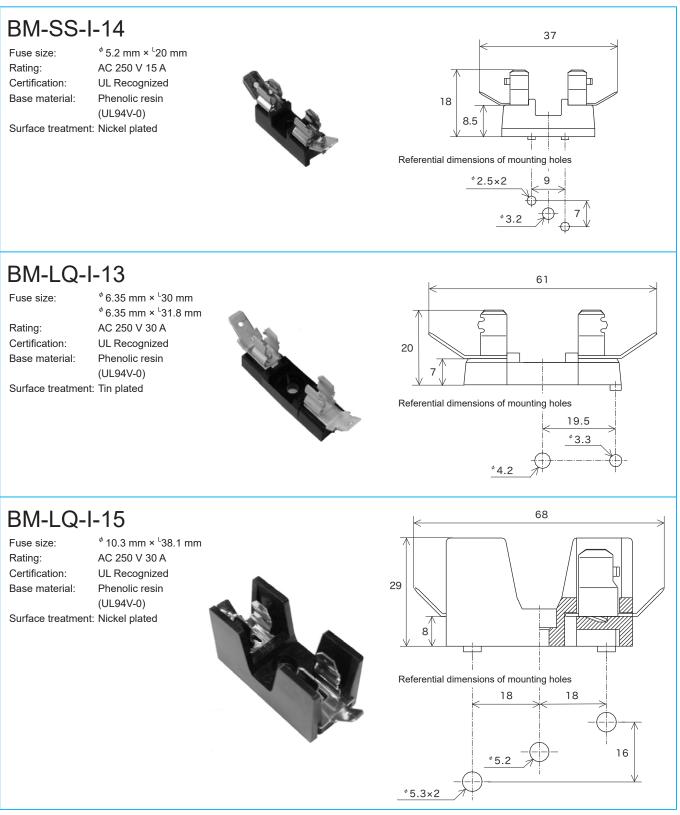
Pb free*3

Representative pre-arcing time-current characteristics

Scale: 1/1 (mm)

Rated voltage	Certification	Rated current (<i>I</i> _N) *1		breaking rrent	Temp. rise	Current carrying capacity	Overload operation
AC 250 V	PS *2	500 mA–5 A	500 A	PF	At 1.1 / _N , 140 K or less	1.1 / _N until constant	Within 60 min at 1.35 / _N
AC 250 V	E Z	Over 5 A–30 A	100 A	0.7–0.8	at the center, 60 K or less at the contact	temperature is obtained on each part	Within 2 min at 2.0 <i>I</i> _N

*1: Customer-requested rated current values can be supplied from within the given range.

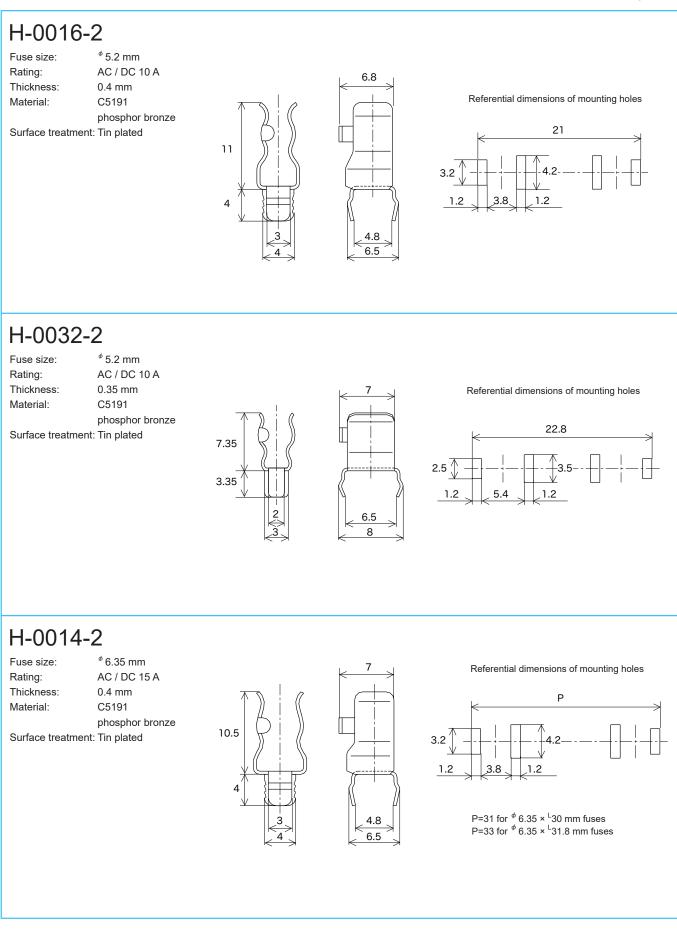

*2: Fuses with rated currents of less than 1 A are not considered electrical products per the Electrical Appliance and Material Safety Law.

*3: 500 mA-12 A Pb free

Over 12 A-30 A This product uses high melting temperature type solder containing 85% by weight or more lead. This type of solder is exempted from the RoHS Directive.

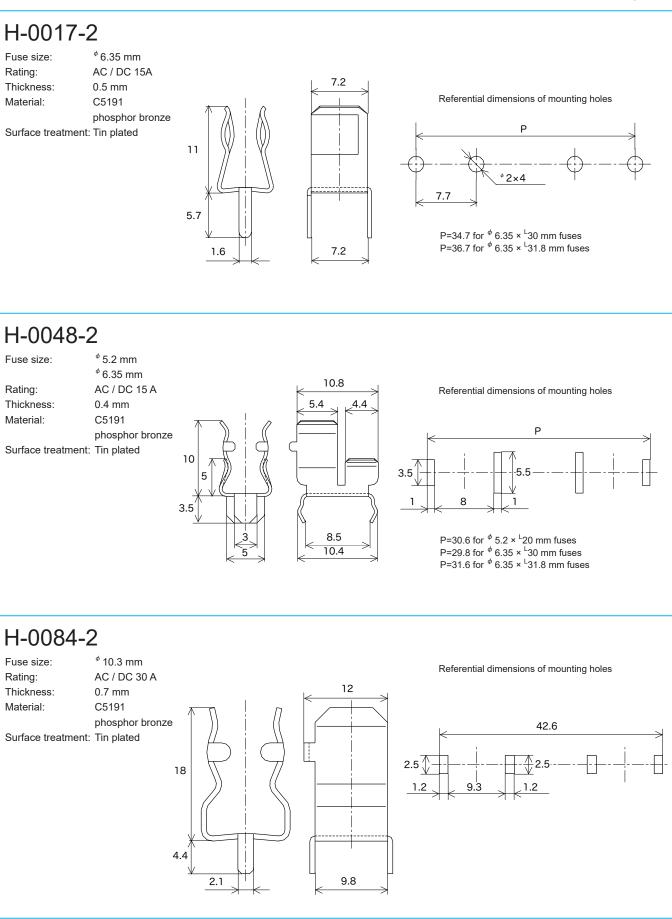
Fuseholders

Unit: mm



≜ CAUTION

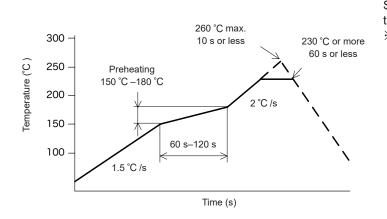
- The fuseholder ratings shown above represent the maximum ratings for fuses that can be used under normal circumstances. Rated currents are based on the assumption that a fuse inserted in a fuseholder will operate at less than or equal to 1.35 times the fuseholder's rating. For all other cases, please contact your SOC representative.
- When inserting a fuse into a fuseholder, please do not force the fuse into the holder or hit the fuse. Contact failure caused by damage to the fuse or deformation of the fuseholder's clips due to impact or forcing the fuse into the holder may significantly alter the fuse's electrical characteristics and lifetime, and may lead to accidents including nuisance operations.


Fuse clips

Unit: mm

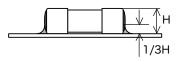
Fuse clips

Unit: mm


Technical information

Resistance to soldering heat

Fuses are heat-sensitive components. The soldering conditions shown below are examples based on the use of our facilities. Sufficiently evaluate and examine your company's soldering conditions as they may vary depending on such factors as available facilities, solder type, solder quantity, board size, and board materials.


Board and solder used Board: Glass epoxy, thickness 1.6 mm Solder: Sn-3.0Ag-0.5Cu

Surface mount fuses: Reflow soldering (11CT Type / 25CT Type / 36CFA / 36CT)

Soldering can be repeated a maximum of two times under these conditions.

※ For 36CFA fuses, please ensure that the height of the fillets is not more than onethird of the entire height of the fuse.

Note: Please contact your sales representative for information concerning the MCF3.

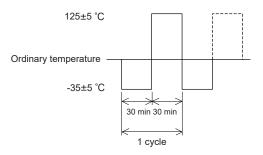
Sub-miniature fuses with leads (25RT Type)

- Wave soldering Solder bath temp.: 260 °C or less Duration: 10 s or less
- Hand soldering with soldering iron
 Soldering iron tip temp.: 380 °C or less
 Duration: 5 s or less

- Pin terminal fuses (SMC N4)
 Wave soldering Solder bath temp.: 265 °C or less Duration: 5 s or less
 - Hand soldering with soldering iron
 Soldering iron tip temp.: 350 °C or less
 Duration: 2 s or less

Cartridge fuses with leads

 Wave soldering Preheating temp.: 80 °C–140 °C
 Preheating time: 30 s–60 s
 Solder bath temp.: 260 °C or less
 Duration: 7 s or less Hand soldering with soldering iron
 Soldering iron tip temp.: 380 °C or less
 Duration: 3 s or less


Lead wire diameter	Distance between the fuse body and the side to be soldered (L)	Lead wire diameter	Distance between the fuse body and the side to be soldered (L)
φ 0.5 mm φ 0.6 mm	5 mm or more	φ 0.5 mm φ 0.6 mm	
φ 0.8 mm φ 1.0 mm φ 1.2 mm	8 mm or more	φ 0.8 mm φ 1.0 mm φ 1.2 mm	5 mm or more

Whiskers

The following tests are performed to ensure there is no whisker generation on the tin-plated parts of our products.

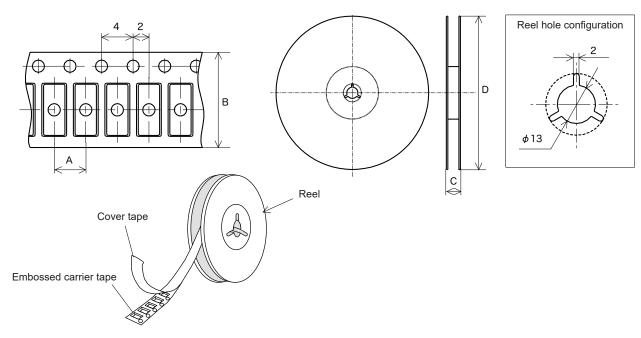
Temperature cycling test

After test samples are subjected to 500 cycles of temperature cycling as specified below, there shall be no whisker generation when observed using a microscope with a magnification of 40 times.

Constant temperature and humidity test

After test samples are left at a temperature of 85 °C and an RH of 85% for 500 h, there shall be no whisker generation when observed using a microscope with a magnification of 40 times.

Storage conditions

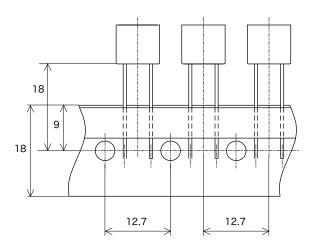

Prerequisite:	Products shall be packaged as delivered.
Ambient temperature:	–20 °C–+40 °C
Ambient humidity:	85% RH or less
Storage environment:	Not exposed to corrosive gas or sea breeze.
	Not exposed to direct sunlight.
	Not subjected to loads which could cause deformation of the products.
Storage period:	Within one year from the date on the product packaging.

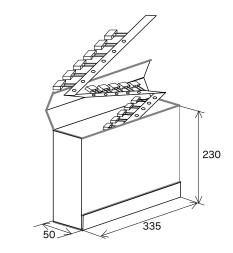
Packaging specifications

Surface mount fuses

Packag metho	ing d		Tape an	d reel packaging		Bag packaging
	Packaging R08B4		R12A4	R24D4	В	
Qty. pac	Qty. packed 2000 pcs.		1000 pcs.	2000 pcs.	100 pcs.	
	А	4		4	8	
Dimensions	В	8		12	24	
(mm)	С	11.4		15.6	29.5	_
	D	180		178	330	
Type na	me	11CF 11CT 32V11CF P11CF P11CT DC35V11CT DC35VP11CF DC35VP11CT	DC86V11CT 11CFB 11CTB MCF3	25CF 25CT DC300V25CF P25CF P25CT DC35VP25CF DC35VP25CT	36CFA 36CT	Used for all fuse types

Tape and reel configuration / packing method (unit: mm)


Bag packaging for sub-miniature fuses with leads


Type name	Forming specification	Standard total qty. per box	Packaging method
25RF	F002	2000 pcs.	100 pcs x 20 bogs
P25RF	F003	2000 pcs.	100 pcs. × 20 bags
DC35VP25RF 25RT	F006		
P25RT	F007	1000 pcs.	100 pcs. × 10 bags
DC35VP25RT	F116		

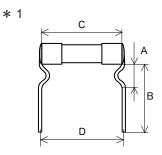
Bag / tape packaging for pin terminal fuses

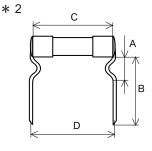
Type name	Standard total qty. per box	Packaging method	
SMC N4	1000 pcs.	Tape packaging	

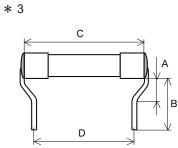
Tape configuration / packing method for SMC N4 (unit: mm)

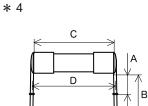
Bag packaging for cartridge fuses

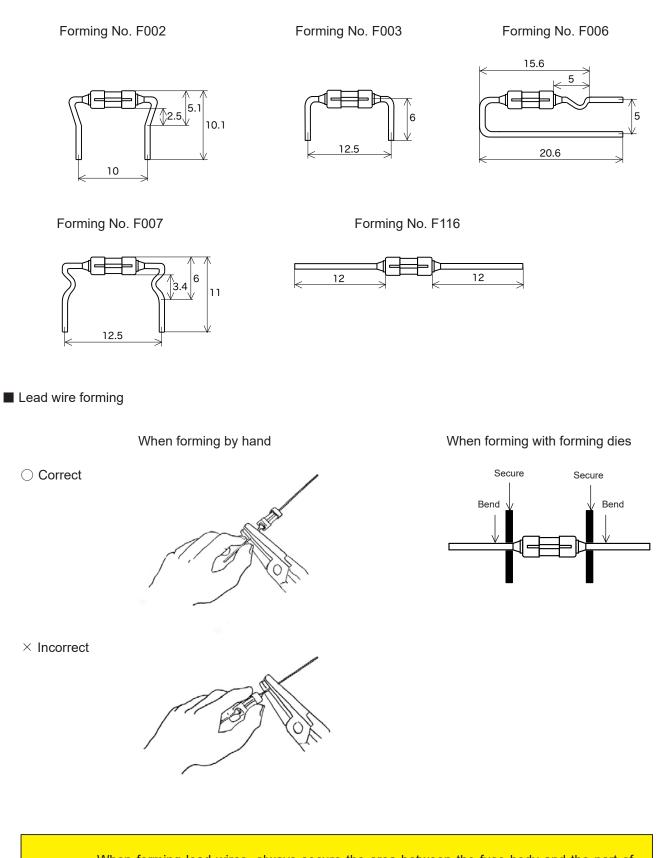
			Standard total quantity per box			
Fuse dimensions			Cartridge type with leads			
(1	mm)	Cartridge type	Leads of ϕ 0.6mm or less	Leads of ϕ 0.8mm or greater		
[¢] 4	× ^L 9	2000 pcs. (1000 pcs. × 2 bags)	400 pcs. (100 pcs. × 4 bags)	400 pcs. (100 pcs. × 4 bags)		
¢ 4.6	× ^L 14	1000 pcs. (1000 pcs. × 1 bag)	-	200 pcs. (100 pcs. × 2 bags)		
¢ 4.6	× [∟] 16	1000 pcs. (1000 pcs. × 1 bag)	400 pcs. (100 pcs. × 4 bags)	200 pcs. (100 pcs. × 2 bags)		
¢ 5.2	× ^L 20	1000 pcs. (1000 pcs. × 1 bag)	400 pcs. (100 pcs. × 4 bags)	200 pcs. (100 pcs. × 2 bags)		
¢ 6.35	× ^L 15.9	500 pcs. (500 pcs. × 1 bag)	-	200 pcs. (100 pcs. × 2 bags)		
¢ 6.35	× ^L 20	-	-	100 pcs. (100 pcs. × 1 bag)		
¢ 6.35	× ^L 25.4	500 pcs. (500 pcs. × 1 bag)	-	100 pcs. (100 pcs. × 1 bag)		
¢ 6.35	× ^L 30	500 pcs. (500 pcs. × 1 bag)	-	100 pcs. (100 pcs. × 1 bag)		
¢ 6.35	× ^L 31.8	400 pcs. (400 pcs. × 1 bag)	-	100 pcs. (100 pcs. × 1 bag)		
[¢] 7.14	× ^L 31.8	300 pcs. (300 pcs. × 1 bag)	-	-		
¢ 10.3	× ^L 38.1	100 pcs. (100 pcs. × 1 bag)	-	50 pcs. (50 pcs. × 1 bag)		


Please contact your sales reprentative for product packaging specifications not listed in this catalog.


Please contact your sales representative for forming specifications not listed below and for questions regarding dimensional tolerances.


Cartridge fuses with leads (unit: mm)


The D dimensions in parentheses are for reference purposes only, and are not intended to infer any guaranteed values.


Fig. No.	Fuse dimensions	Lead wire diameter	Forming No.	Dimensions			
				A	В	С	D
* 1	[¢] 4 × [∟] 9	0.8	F451	5.2	10	9	(10)
	[¢] 4.6 × [∟] 16	0.8	F051	5.2	10	16	(17)
	[¢] 5.2 × [∟] 20	0.8	F013	5	9.5	20	(21)
		1.0	F057	5	8.6	20	(21.4)
	[¢] 6.35 × [⊥] 30	1.0	F916	5	9.7	30	(32.2)
	[¢] 6.35 × [∟] 31.8	1.0	F019	5	40	31.8	(33)
		1.2	F021	5	9	31.8	(33)
		0.8	F918	5	9	31.8	(33)
* 2	[¢] 6.35 × [⊥] 30	1.2	F915	5	9.7	30	(32.2)
* 3	[¢] 6.35 × [⊥] 30	1.2	F502	5	9.7	30	(25)
* 4	[¢] 4.6 × [⊥] 14	0.8	F024	5	10	14	(15)
	[¢] 4.6 × [⊥] 16	0.8	F025	5	10	16	(17)
	[¢] 5.2 × [∟] 20	0.8	F026	5	10	20	(21)
		1.0	F036	5	10	20	(21)

When forming lead wires, always secure the area between the fuse body and the part of the lead wire to be formed as shown in the figure above. Make sure not to put any stress on the area connecting the fuse body and the lead wire.

Fuse selection process

Fuse selection process

Properly selected fuses prevent accidents by breaking abnormal currents when they flow through electric circuits. Improper selection, however, can result in nuisance operations, continued flow of abnormal currents, generation of smoke and/or fire, and other dangers.

Safety precautions when selecting fuses

What is the voltage of the circuit the fuse will be used in?

Make sure to select a fuse that has a rated voltage higher than the voltage of the circuit.

The rated voltage of a fuse is the maximum voltage at which the fuse can safely interrupt an abnormal current. If the voltage of the circuit is higher than the fuse's rated voltage, there is a danger the fuse may be destroyed as shown below. Please exercise caution.

Before testing

Ignition and burning

After testing

Example of a breaking test where the circuit voltage is higher than the rated voltage of the fuse

Will the fuse be used in an AC circuit or a DC circuit?

Only select DC rated fuses for DC circuits, and AC rated fuses for AC circuits.

For AC circuits, there is a tendency for arc discharges to be extinguished when the power supply voltage goes to zero as shown in Figure 1 below. Caution should be exercised regarding use of DC circuits as DC voltage does not go to zero, and therefore there is the risk that an arc discharge may not be extinguished which may result in destruction of the fuse.

Therefore, due to the difference in circuit characteristics for AC and DC circuits, mistakenly using an AC fuse in a DC circuit or a DC fuse in an AC circuit may cause an accident.

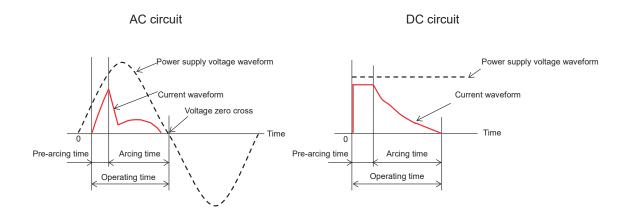


Figure 1 - Fuse operation waveforms and showing the difference between AC and DC circuits (actual waveforms may differ from the above)

What is the power factor / time constant of the circuit in which the fuse is to be installed?

The amount of the inductance of the circuit relates to the magnitude of the power factor or the time constant. When interrupting an abnormal current in a circuit with a large inductance, an arc voltage greater than that of the power supply may occur, and the fuse may be unable to safely break the current. The larger the inductance, the greater the arc energy generated at the fuse. The fuse is destroyed if it cannot withstand the arc energy.

When selecting fuses, please confirm that the fuse you have selected can safety clear abnormal currents in the equipment in which it is to be used.

- How will the fuse be mounted?
 - (1) Mounting directly to a wiring circuit board a) Surface mount type

b) Terminals passed through holes in a wiring circuit board (pin terminals, lead terminals, and others)

(2) Mounting a fuse in a fuseholder (or clips)

(3) Directly bolted to a circuit

Please contact us for development of custom-designed fuses based on your shape and dimensional requirements.

How large current will be passed through the circuit the fuse will be used in?

A rated current is defined for each fuse, and this value is marked on it. Understanding the following circuit currents (including their waveforms) is important for selecting the appropriate rated current and rated breaking current^{*1} for a fuse in order to prevent nuisance operations and ensure the fuse is able to interrupt abnormal currents.

- Steady-state current
- Inrush current
- Abnormal current
- *1 "Rated breaking capacity" is used in IEC 60127 (Miniature fuses) series, "interrupting rating" in the UL/CSA 248 series (Lowvoltage fuses), and "rated breaking capacity" in JIS C 6575 (Miniature fuses) series, but all of these refer to the rated breaking current.
- (1) Evaluation of a steady-state current

In order to avoid nuisance operation over long-term use, please select a fuse which has pre-arcing timecurrent characteristics^{*2} such that the fusing current is sufficiently larger than the steady-state current (root mean squared value) of the actual circuit in which the fuse will be installed. Figure 2 shows an example of the necessary difference (margin) between fusing current and actual circuit current.

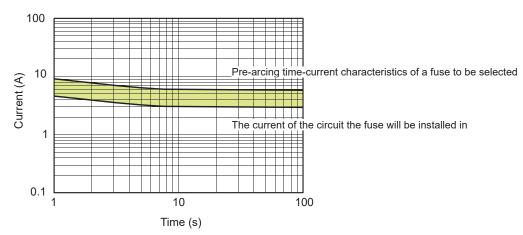


Figure 2 - Fuse selection example for a steady-state current

*2 Pre-arcing time-current characteristics:

As shown in Figure 3, pre-arcing time-current characteristics are created from the average pre-arcing time values for a number of constant currents. These are not guarantees of a fuse's characteristics. This current is a current that would flow in the circuit if a fuse were replaced by a link of negligible impedance (prospective current).

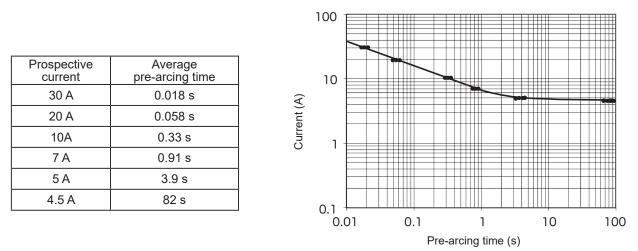
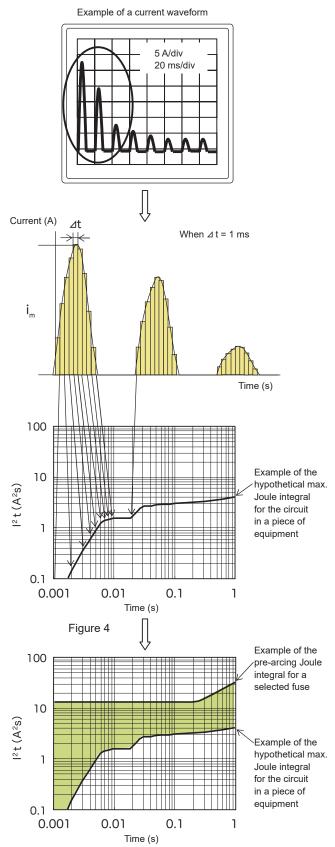


Figure 3 - Example of how to plot pre-arcing time-current characteristics

(2) Evaluation of an inrush current

Generally it is not possible to evaluate inrush currents with pre-arcing time-current characteristics, since the peak values of inrush currents change dramatically with time. However, it is possible to evaluate the occurrence of nuisance operations by comparing the circuit's Joule integral (I_m^2t , the integral of the square of the instantaneous current passed through the circuit over a certain time interval) with the pre-arcing Joule integral of the fuse (I_f^2t) in the short-time range where heat release from fuse-element to fuse body or fuseterminations is not large. **Evaluation process**


- Repeatedly measure the current waveform of the circuit from when the equipment is powered on (inrush current) to the steady-state current.
- ii) Discharge the remaining electric charge in the circuit's capacitor and measure the current waveform. If there is a component like a thermistor with a resistance that changes depending on the temperature, measure the current waveform at the minimum resistance.
- iii) Based on the measured current waveform, calculate the circuit's Joule integral $(I_m^2 t)$ for each time. For example, the circuit's Joule integral is calculated as follows when you have the Joule integral for 0.01 s and the sampling interval Δ t is equal to 0.001 s. Note that the instantaneous value of the current that flows through the circuit is represented by $i_m(t)$. In actual practice, an even smaller sampling interval is used. A larger value was selected to explain the process. 0.01 s divided by 0.001 s is equal to 10. Therefore:

$$I_m^2 t \mid_{t=0.01} = \int_{t=0}^{0.01} [i_m(t)]^2 dt \approx \sum_{k=1}^{10} \left\{ [i_m(\varDelta t \cdot k)]^2 \times \varDelta t \right\}$$

- iv) Calculate the Joule integral for each time and plot the values on a graph as in Figure 4.
- v) As in Figure 5, plot the graph with the circuit's maximum Joule integral and the fuse's pre-arcing Joule integral as functions of the time. In order to prevent nuisance operation, the relationship of maximum circuit Joule integral ≤ fuse pre-arcing Joule integral is always necessary, and in order to prevent nuisance operations caused by aging, it is necessary to select fuses with sufficient margin (for example, the shaded region in Figure 5). As the necessary margin differs depending on the usage conditions, it is necessary to perform evaluations in the actual equipment the fuse will be used in.

(3) Evaluation of an abnormal current

Measure the maximum possible abnormal current and select a fuse with a rated breaking current that can interrupt that abnormal current. Additionally, the minimum possible abnormal current should also be measured. In the comparatively short-time region, the fuse's Joule integral shall be less than or equal to the Joule integral of the circuit when the minimum abnormal current flows through it. In the comparatively long-time region, the fuse's minimum pre-arcing current shall be less than or equal to the abnormal current. The judgement whether or not these two relationships are fulfilled, depending upon the protection conditions at what point and over what time the abnormal current is required to be interrupted, can be difficult in most cases. Therefore it is both necessary and important to confirm whether the fuse can safely interrupt the abnormal current in the actual application.

Before final fuse selection, always test the proposed fuse in your actual equipment to ensure that the fuse satisfies all your operational and safety requirements. Please contact your local SOC sales representative for help in selecting fuses.

Explanation of rated current

The requirements stipulated by each standard differ even among fuses with the same rated current, and each standard specifies pre-arcing (operating) times for multiples of the rated current (I_N). In other words, pre-arcing time-current characteristics differ depending on the standard even when the rated current is the same.

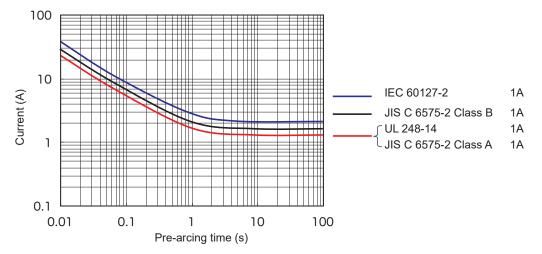


Figure 6 - Examples of pre-arcing time-current characteristics for the same rated current based on different standards

On July 1, 2013, the Ministry of Economy, Trade and Industry (hereinafter called "METI") Order establishing technical requirements for electrical appliances and materials was completely revised (with implementation from January 1, 2014) in order to change detailed specification requirements to safety performance requirements. The third table appended to the order prior to the revision (hereinafter called the "prior technical requirements") is, at the current moment, approved to be used as one of the criteria for safety performance requirements for fuses according to the interpretation of the Ministerial Order. Specifications stipulated in the prior technical requirements for miniature fuses have been partially modified and incorporated into the JIS C 6575 (Miniature fuses) series step by step, taking into consideration consistency with the IEC 60127 series.

Within the JIS C 6575 series, specifications in the standard sheets containing the letter "J" are based on the prior technical requirements, while those with only Arabic numerals are based on the IEC standard. Revision of JIS standards can take a long time, and new versions may be delayed in some cases.

Tables 2-1, 2-2, and 2-3 show examples of minimum fusing currents and pre-arcing/operating times stipulated by different standards.

	Operating time ^{*3} & current	Current carrying capacity
Microfuse ^{*4}	Within 1 min at 2 I _N	IN until temperature stabilization
All other fuses	Within 60 min at 1.35 $I_{\rm N}$	

*3 An operating time is the sum of a pre-arcing time and an arcing time. In the low-current region, pre-arcing times are much longer than arcing times, making operating times and pre-arcing times roughly equivalent in this region.

*4 Each of the main dimensions (total length, width, height, and diameter) must be less than or equal to 10 mm, not including lead or in terminals.

Class	Pre-arcing time & current	Current carrying capacity
А	Within 60 min at 1.35 I _N	1.1 / _N for at least 60 min
В	Within 60 min at 1.6 / _N	1.3 <i>I</i> _N for at least 60 min
Special	Within the manufacturer's indicated time at the indicated current	<i>I</i> _N for at least 60 min

Table 2-2: JIS C 6575-2 (Cartridge fuses) Standard sheet J1

Standard and standard sheet number	Pre-arcing time & current	Current carrying capacity at endurance test end
IEC 60127-2 ^{*5} SS 1, 2, 5, 7, 9, 10	Within 30 min at 2.1 I _N	
SS 3, 6	Within 2 min at 2.1 $I_{\rm N}$	1.5 / _N for 60 min for / _N of 6.3 A or less 1.5 / _N for 30 min for / _N greater than 6.3 A
SS 8	Within 2 min at 2.1 I_N (however, for I_N greater than or equal to 8 A, the pre-arcing time shall be within 10 min)	
SS 4	Within 20 s at 2 <i>I</i> _N	1.15 <i>I</i> _N for 60 min
IEC 60127-3 ^{*6} SS 1, 2	Within 5 s at 2 $I_{\rm N}$	<i>I</i> _N value for 4 h
SS 3	Within 30 min at 2.1 <i>I</i> _N	
SS 4	Within 2 min at 2.1 I_N (however, for I_N greater than 6.3 A, the pre-arcing time shall be within 5 min)	1.5 <i>I</i> _N for 60 min
IEC 60127-4 ^{*7} SS 1, 2	Within 2 min at 2 $I_{\rm N}$	1.25 <i>I</i> _N for 60 min
IEC 60127-7 ^{*8} SS 1	Within the manufacturer's indicated time, but not more than 60 min at 2 <i>I</i> _N or 2.1 <i>I</i> _N	The manufacturer's indicated current fo 60 min

*5 Cartridge fuse-links (fuses are referred to as "fuse-links" in the IEC standard)

*6 Sub-miniature fuse-links, with no principal dimension (length, width, height, and diameter) exceeding 10 mm

*7 Universal modular fuse-links

*8 Miniature fuse-links for special applications

Time-current characteristics

As per Figure 7, it is possible to design fuses having the same rated current, but with differing pre-arcing timecurrent characteristics. Please consult with SOC sales representatives when it is necessary to prevent nuisance operation due to an inrush current, or when an abnormal current should be interrupted more quickly.

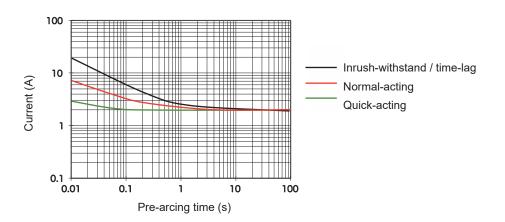


Figure 7 - Imaginal figure to explain differences in pre-arcing-time current characteristics for the same rated current

Rated breaking current

The rated breaking current is the upper limit value of prospective current that a fuse is capable of safely breaking under test conditions defined in a standard. Generally, breaking capacity tests are conducted using a circuit with a voltage 1–1.05 times the rated voltage of the fuse. As shown in Table 4-1 and 4-2, values of the rated breaking current differ depending on the standard. The lower limit value of current which a fuse can safely break is referred to as the minimum breaking current. For fuses with a minimum breaking current that is greater than the minimum fusing current, care should be taken as it cannot protect against overload currents between the minimum fusing current and minimum breaking current.

	Rated breakir	Power factor (lagging)		
Microfuses	50 A or n	0.95–1		
	As a rule, the rated breaking cu for rated voltages greater than however, a fuse rated AC 250 V and this rating shall be 10,000 following at AC 250 V	or equal to AC 125 V; / may have a dual rating A at AC 125 V and the		
	$I_{\rm N} \leq 1 {\rm A}$	35 A	0.7–0.8	
All other fuses	1.1 A ≦ <i>I</i> _N ≦ 3.5 A	100 A		
	3.6 A ≦ <i>I</i> _N ≦ 10 A	200 A		
	10.1 A ≦ <i>I</i> _N ≦ 15 A	750 A		
	15.1 A ≦ <i>I</i> _N ≦ 30 A	1,500 A		
	50,000 A or 1	0.2 or less		
	Equal to or less than 10,000 A less than AC 125 V	0.85–1		

Table 4-1: UL 248-14 (CSA C22.2 No. 248.14) Supplemental fuses

Table 4-2: Breaking capacities stipulated in the JIS and IEC standards (excluding fuses for special applications	
according to IEC 60127-7 ^{*9})	

Standard number	Standard sheet number	Rate	d breaking current	Power factor (lagging)	
		Low-breaking capacity	100A		
JIS C 6575-2	SS J1	Intermediate- breaking capacity	300 A or 500 A	0.7–0.8	
		High-breaking capacity	1,500 A or 2,500 A		
JIS C 6575-3	SS J1, J2	Low-breaking capacity	100 A	0.7–0.8	
010 0 0010-0		Intermediate- breaking capacity	300 A or 500 A	0.7 0.0	
JIS C 6575-4		Low-breaking capacity	100 A		
	SS J1, J2	Intermediate- breaking capacity	300 A or 500 A	0.7–0.8	
		High-breaking capacity	1,000 A or 1,500 A		
	SS 1, 5, 9, 10	High-breaking capacity	1,500 A	0.7–0.8	
IEC 60127-2	SS 2, 3, 4	Low-breaking capacity	35 A or 10 <i>I</i> _{N,} whichever is greater	Resistive circuit	
IEC 00127-2	SS 6	Enhanced	150 A	Resistive circuit	
	SS 7, 8	breaking capacity	200 A	0.95–1	
IEC 60127-3	SS 1, 2	Low-breaking	50 A	Greater than 0.95, less than or equal to 1	
IEC 00127-3	SS 3, 4	capacity	35 A or 10 <i>I</i> _{N,} whichever is greater		
		High-breaking capacity	1,500 A	0.7–0.8	
	SS 1, 2 (Rated voltage 250 V)	Intermediate- breaking capacity	500 A	0.8–0.9	
IEC 60127-4		Low-breaking capacity	100 A		
	SS 1, 2	Low-breaking	50 A or 10 <i>I</i> _{N,}	Greater than 0.95,	
	(Rate voltage 125 V)	capacity	whichever is greater	less than or equal to 1	
	SS 1, 2	Low-breaking	35 A or 10 / _{N,}		
	(Rated voltage 63 V or less)	capacity	whichever is greater		

*9 For the rated breaking current, manufacturers can specify any value equal to or less than 50,000 A but equal to or greater than 10 times the rated current.

What is the fuse's ambient temperature?

A fuse will operate when the temperature of the fuse-element exceeds the melting point of the metal it is comprised of, due to Joule heating caused by overcurrents. The temperature of the fuse-element is strongly influenced by heat dissipation. As can be imagined from Figure 8, heat dissipation differs according to the heat conductivity of the surrounding components, including fuse clips, fuseholders, wiring, and the circuit board, as well as the ambient temperature conditions. The pre-arcing time-current characteristics, for example, vary depending on ambient temperature conditions as in Figure 9. Therefore it is essential for final equipment testing to be conducted with the end application subjected to actual mechanical, electrical, and ambient conditions in order to assure achievement of satisfactory results and desired reliability. The effect of ambient temperature on pre-arcing time-current characteristics can be confirmed by temperature re-rating as shown in Figure 10. Please contact your SOC sales representative for temperature re-rating information.

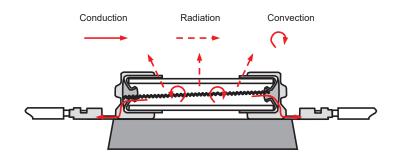


Figure 8 - Image showing heat transfer for a glass cartridge fuse

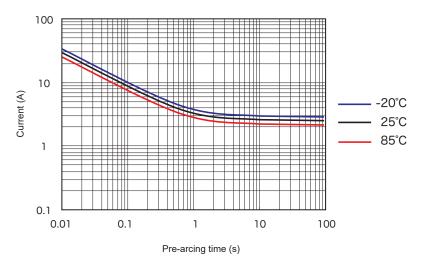


Figure 9 - Example of the effects of a changing ambient temperature on pre-arcing time-current characteristics

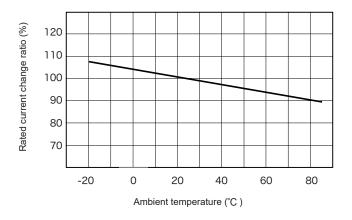


Figure 10 - Example of re-rating of rated current by ambient temperature

Certifications

Certification is the process by which an independent third-party, through a product and factory inspection, verifies whether an industrial product's functionality or quality satisfies certain standards. For fuses, products which have obtained certification have the certification mark displayed on the actual product or the packaging.

We have concluded separate contracts with four certification organizations: UL (Underwriters Laboratories Inc.), CSA (Canadian Standards Association), SEMKO (Intertek Semko AB), and BSI (British Standards Insitutuion), and we have received permission to use their certification marks for certain fuses.

Fuses which display a certification mark in accordance with these contracts are called "certified fuses." Generally, certification bodies inspect and run tests on the fuse and verify whether it meets certain conditions. In order to ensure future compliance, factory inspections and sample tests are conducted.

The PSE mark differs from certification marks. This mark shall be displayed on fuses, which are regulated by the Electrical Appliance and Material Safety Act as electrical products. Below is an explanation of the mark displayed on the product and packaging.

PSE Mark

The PSE Mark is based on the Electrical Appliance and Material Safety Law (EAMSL) of Japan. As per the EAMSL, parts of electrical facilities for general use, or machines, appliances, or materials for use in connection thereto, stipulated by the Order for Enforcement of the EAMSL, are regulated as electrical appliances and materials.

In regard to fuses, those rated AC 100 V to 300 V and 1 A to 200 A are categorized as electrical appliances and materials according to this order. As a Notifying Supplier for enclosed fuses, SOC notifies the METI of the type classifications, specified in the Regulation for Enforcement of the EAMSL, for enclosed fuses that we manufacture in accordance with the EAMSL.

The fuses SOC manufactures which are rated AC 100 V to 300 V and with rated currents equal to or greater than 1 A (hereinafter called "the relevant fuses") are categorized as specific electrical appliances and materials per the above order. Unless the relevant fuses satisfy the requirements provided in the EAMSL, they cannot, as a general rule, be sold in Japan.

One of these requirements is that the relevant fuses must be marked as stipulated in the Enforcement Regulations.

In order to bear the markings, the relevant fuses are required to be in compliance with the technical requirements stipulated in the METI Order establishing technical requirements for electrical appliances and materials. Sample fuses that fall within each type classification as the relevant fuses must be tested by a test house registered with the METI in order to receive at least one valid conformity certificate for each type classification.

SOC applies to the Japan Electrical Safety & Environment Technology Laboratories (JET) for conformity certificates (which are valid for seven years from the date of issue) such that at least one certificate is valid for each type classification of the relevant fuses that SOC sells to the Japanese market.

In principle, packing labels for the relevant fuses for the Japanese market are marked with the PSE Mark $\langle PS \\ E \rangle$ and **JET**, the abbreviated name of the Japan Electrical Safety & Environment Technology Laboratories, as well as our trademark "SOC" and the fuse's electrical ratings. The position of **JET** is beneath or on the right side of $\langle PS \\ E \rangle$. The relevant fuses themselves are also marked with "SOC," and if there is sufficient space, with $\langle PS \\ PS \rangle$.

Example of PSE Mark

Fuses which have been manufactured entirely for export to countries outside of Japan, however, are not marked with (1) JET, nor are their packaging.

Certification Marks for North America

The following is an explanation of the markings shown on products, and/or packaging, which have received either UL (Underwriters Laboratories Inc.) or CSA (Canadian Standards Association) product certification services.

UL Listing Mark

This is a mark based on the UL Listing and Follow-Up Services. UL tests product samples (fuses) to check conformity with the applicable UL standards. After a set of reports are issued by UL, authorization to use the UL Listing Mark is provided based on the conditions listed in the reports.

In order to ensure that all future fuses continue to be in conformance to the requirements described in the reports, UL conducts quarterly on-site inspections and sampling tests as part of their Follow-Up Services.

The standard with which SOC fuses must conform is UL 248-14: Supplemental Fuses. This standard is Part 14 of UL 248 Low-Voltage Fuses, which consists of 20 parts. The UL 248 standards are coordinated among the United States, Canada, and Mexico. The requirements of the UL and CSA standards are the same for Part 14 as listed below:

ANSI / UL 248-14 = CAN / CSA C22.2 No.248.14

In 1992, the Standards Council of Canada (SCC) granted UL Canadian Certification Organization and Testing Organization status providing services for Canada. This enabled UL to begin conducting tests and issuing certifications for Canada.

SOC began requesting certifications for both Canada and the USA when we apply for Listing Services for a new product. As the requirements of both the UL and CSA standards are the same, use of the C-UL US Listing Mark is accepted in the issued reports without the need for additional testing, with a description stating that, in addition to UL 248-14, the requirements of CSA C22.2 No. 248.14 have also been evaluated.

When space permits, the UL Listing Mark is marked on our applicable fuses. For cartridge fuses, the mark is die-stamped on the side of one of the end-caps. Along with either the UL Listing Mark or the C-UL Listing Mark, "Listed," "360C" (the control number assigned to SOC), and the product identity ("SUPPLEMENTAL FUSE," "MISCELLANEOUS FUSE," "MINIATURE FUSE," or "MICRO-FUSE") are also printed on the packaging.

UL Recognized Component Mark

This mark is based on the UL Component Recognition and Follow-Up Services. In the same way as the UL Listing and Follow-Up Service, UL tests product samples (either fuses or fuseholders) in order to issue a set of reports and authorize the use of the UL Recognized Component Mark under the conditions specified in the reports. Additionally, in order to confirm that the fuses produced afterward continue to be in conformance with the requirements described in the reports, UL conducts quarterly onsite inspections and sampling tests as part of their Follow-Up Services.

UL Recognized Component Mark

Although the Listing Service requires that the fuses conform to the UL standard, the Component Recognition Service does not necessarily require this as it is possible to change a portion of the UL standard requirements. For example, although 5 x 20 mm cartridge fuses based on IEC 60127-2 do not meet the time-current characteristics of the UL standards, SOC can apply for the Component Recognition Service for these fuses according to the characteristics and breaking capacities stipulated by the IEC standard. Applications for this service can also be made for fuses having only the DC rating. SOC applies for these services for some of our fuseholders as well.

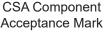
Recognized Components which have undergone the Component Recognition and Follow-Up Services are components that are used in equipment. UL evaluates whether the fuse or fuseholder is appropriate for use in the end-equipment, and if it is a fuse, whether the fuse can appropriately protect the equipment.

As with the Listing and Follow-Up Services, when certification for both the USA and Canada is applied for under the Component Recognition and Follow-Up Services, use of the C-UL US Recognized Component Mark is permitted.

In most cases, we mark the Recognized Component Mark or the C-UL US Recognized Component Mark on the packaging instead of on the product itself.

CSA Mark

This mark is based on the CSA Certification Service, which is essentially the same as the UL Listing and Follow-Up Services. Use of this mark is authorized under the conditions stated in the reports issued under this service. On-site inspections and sampling tests are conducted during factory audits.


When space permits, this mark is placed on our fuses. For cartridge fuses, the mark is die-stamped on the side of one of the end-caps. This mark is also printed on our packaging.

CSA Component Acceptance Mark

This mark is based on the CSA Component Acceptance Service, which is fundamentally the same as the UL Component Recognition and Follow-Up Services. For the CSA Component Acceptance Mark, a triangle is added to the CSA Mark. On-site inspections and sampling tests are conducted during factory audits for this mark as well.

SOC prints the CSA Component Acceptance Mark on the packaging instead of on the product itself.

C-UL US Recognized Component Mark Recognized Component Mark for Canada and the United States

S Mark

This mark is based on the certification service provided by Intertek Semko AB (SEMKO).

SEMKO tests product samples in accordance with the requirements of the applicable EN standards, and issues certificates and permits use of the S Mark for products which can be confirmed as meeting the requirements.

When SEMKO considers that a product conforms to the minimum safety requirements, usage of the S Mark is permitted for the product tested under the conditions modified from EN standards after the issuance of a certificate.

Unlike UL or CSA, the same S Mark is permitted to be used for products which satisfy the minimum safety requirements regardless of conformity to the EN standard.

The S Mark is indicated on the packaging for our fuses which have received this certification. For marking on the fuse itself, however, use of the S mark without "Intertek" is accepted due to the limited space on the fuse.

Kitemark

This mark is based on the Kitemark certificate issued by the British Standards Institution (BSI). BSI issues the Kitemark certificate in those cases where product samples are confirmed by testing to meet the relevant British Standards (BS EN 60127-2), and additionally where the quality system for its production conforms to BS EN ISO 9001. BSI grants the right to use the Kitemark based on the Kitemark certificate. At least once a year on-site inspections and sampling tests are conducted for continued use of the mark. One of end-caps of the certified fuses is marked with the Kitemark.

Quality System

^{*3}British Standards Institution

SOC has obtained certification of our quality management system for designing and manufacturing fuses.

Location	Certification agency	Certification
Tochigi Factory	DNV ^{*1}	Standard ISO 9001: 2015
	DNV *2	Standard IATF 16949: 2016 (only for vehicles)
Akita Factory	BSI *3	Standard ISO 9001: 2015
	Assurance UK Limited Assurance USA Inc.	

Intertek S Mark

S Mark without "Intertek"

•
121
Kitemark

Search by certification

PS *	or SN	or	S	Ŷ	Shape	Dimensions (mm)	Rated voltage	Characteristic	Type name	Rated current	Page		
	•	•	•	•	Contridad tura				ET	315 mA–6.3 A	63		
					Cartridge type	[¢] 5.2 × [∟] 20	_	Time-lag	HT N5	1 A–10 A	67		
•	•	•	•	•	Cartridge type with leads				HTR N5	1 A–10 A	68		
•					Surface mount type	^w 3.6 × [⊦] 3.6 × [∟] 17		lewish withstand	36CT	1 A–6.3 A	34		
•	•	•	•			[¢] 6.35 × [∟] 30	AC 250 V	Inrush-withstand	TLC N4	8 A–25 A	111		
•	•	•	•		Cartridge type	[¢] 5.2 × [∟] 20		Time-lag	ET6	1 A-6.3 A	64		
•	•		•		Cartridge type	[¢] 6.35 × [⊥] 30		Inrush-withstand	TLCR N4	8 A–25 A	112		
•	•		•		with leads	[¢] 5.2 × [∟] 20		Time-lag	ET6R	1 A–6.3 A	65		
	•	•	•		Pin terminal	^w 4 × ^H 7.7 × ^L 8.4		Inrush-withstand	SMC N4	4 A	37		
•	•	•			type	^w 3.6 × ^H 3.6 × ^L 11		Quick-acting	36CFE	63 mA–4 A	36		
•	•	•			Surface mount			Quick-acting	25CF	Over 4 A–6.3 A	26		
•	•	•			type	^w 2.57 × ^H 2.57 × ^L 6.1	AC 125 V	Inrush-withstand	25CT	Over 3.15 A–5 A	27		
•	•	•							KST2 N1	6.3 A-30 A	75		
•	•	•				[¢] 10.3 × [∟] 38.1		Inrush-withstand	SKM10 N1	1 A–25 A	95		
•	•	•							SS2 N1	50 mA–5 A	99		
•	•	•					AC 250 V	Normal-acting	SS6 N1	Over 5 A–8 A	102		
•	•	•							CES14 N1	100 mA–10 A	72		
•	•	•				[¢] 6.35 × [∟] 31.8		Inrush-withstand	ST4 N1	100 mA–8 A	104		
•	•							Normal-acting	SS6 N1	Over 8 A–15 A	102		
•	•	•			Cartridge type		AC 125 V		CES6 N1	100 mA–15 A	70		
•	•	•						Inrush-withstand	ST6 N1	100 mA–15 A	108		
•	•	•			-			Normal-acting	MQ4 N1	62 mA–3 A	79		
•	•						AC 250 V AC 125 V	Inrush-withstand	MT4 N1	100 mA-3.5 A	85		
	•	•				[¢] 5.2 × [∟] 20			MT4 N1D	100 mA-3.5 A	88		
•	•							Normal-acting	MQ2 N1	62 mA–10 A	77		
•	•	•						Inrush-withstand	ULTSC N1	100 mA–10 A	113		
•	•	•						Normal action	SS1 N1	50 mA–5 A	98		
	٠	٠						Normal-acting	SS5 N1	Over 5 A–8 A	101		
	٠	٠			-				AC 250 V	la marka saith at an d	CES15 N1	100 mA–25 A	74
	٠	٠				[¢] 6.35 × [∟] 31.8		Inrush-withstand	ST3 N1	100 mA–8 A	103		
	•							Normal-acting	SS5 N1	Over 8 A–15 A	101		
							AC 125 V		CES7 N1	100 mA–15 A	71		
•					Cartridge type with leads			Inrush-withstand	ST5 N1	100 mA–15 A	106		
						[¢] 6.35 × [∟] 20			250VTMCR N1	1 A–20 A	69		
•	•	•					AC 250 V	Normal-acting	MQ3 N1	62 mA–3 A	78		
		•					7 (O 200 V	Inrush-withstand	MT3 N1	100 mA–3.5 A	80		
•		•				[¢] 5.2 × [∟] 20			MT3 N1D	100 mA–3.5 A	83		
	•	•					AC 125 V	Normal-acting	MQ1 N1	62 mA–10 A	76		
•	•	•						Inrush-withstand	ULTSCR N1	100 mA–10 A	114		
•	•	•			Bolted connection type	[¢] 10 × [∟] 32	AC 250 V	-	AC250VBL1030C	40 A–60 A	58		
	•	٠	٠			[¢] 6.35 × [∟] 31.8	AC 400 V	Inrush-withstand	SHV14	10 A–20 A	41		
	٠	•	٠				DC 400 V		SHV12	1 A–6.3 A	40		
	•	•	•		Cartridge type	[¢] 5.2 × [∟] 20		Quick-acting	HQ N7	400 mA–6.3 A	66		
	•		•	•	5 -7F -		—AC 250 V		EQ	80 mA–6.3 A	62		
•	•					[¢] 6.35 × [∟] 31.8		Inrush-withstand	CES14 N2	Over 10 A–15 A	73		
•	•					[¢] 5.2 × [∟] 20			MT4 N2	Over 3.5 A–15 A	86		
•	•				Cartridge type				MT4 N2D	Over 3.5 A–15 A	89		
•	•				Cartridge type	[¢] 5.2 × [∟] 20	AC 250 V	Inrush-withstand	MT3 N2	Over 3.5 A–15 A	81		
•	•				with leads				MT3 N2D	Over 3.5 A–15 A	84		
•					Sub-miniature type with leads	^w 2.57 × [⊦] 2.57 × [∟] 9	AC 125 V	Quick-acting	25RF	200 mA–5 A	30		

AS *	2 9 3	G or	S	Ø	Shape	Dimensions (mm)	Rated voltage	Characteristic	Type name	Rated current	Page
	•	•			-	^w 3.6 × ^H 3.6 × ^L 17	AC 250 V DC 300 V	Inrush-withstand	36CT	1 A–6.3 A	34
	•	•					DC 600 V DC 425 V		36CFA	63 mA–3.15 A 4 A	- 35
						^w 3.6 × ^H 3.6 × [⊥] 11	DC 423 V DC 600 V	_		63 mA-3.15 A	
	٠	٠					DC 000 V DC 425 V	_	36CFE	4 A	36
	•	•			-		DC 423 V DC 300 V	_	DC300V25CF	63 mA–2 A	27
	•	•					AC 250 V	Quick-acting	0030072301	03 117-2 7	- 21
							DC 150 V			63 mA–4 A	
	•	•					AC 125 V	_	25CF		26
		•					DC 150 V		2001	Over 4 A–15 A	20
						^w 2.57 × ^H 2.57 × ^L 6.1	DC 86 V	_		63 mA–5 A	-
						2.57 ~ 2.57 ~ 0.1	AC 250 V			03 117-3 7	
							DC 125 V			100 mA–3.15 A	
					Surface mount type		AC 125 V	-	25CT		27
							AC 125 V DC 125 V	Inrush-withstand	2501	Over 3.15 A–5 A	21
							DC 125 V DC 86 V	_		100 - 5 0	-
					-			_		100 mA-5 A	
	•	•			-		DC 86 V		DC86V11CT	100 mA-8 A	22
	•	•			-	^w 1.6 × ^H 1.05 × ^L 3.2		Quick-acting	11CF	100 mA-10 A	21
	•	•				1.0 × 1.05 × 3.2	DC 72 V		11CFB	100 mA-10 A	20
	•	•						Inrush-withstand	11CT	100 mA-10 A	21
	•	•			-			11CTB	100 mA–10 A	20	
							AC 32 V			28 mA–250 mA	
				DC 72 V				_			
		•				^w 1.5 × ^H 1.2 × ^L 2.4	AC 25 V	Quick-acting	MCF3	260 mA–1 A 1.1 A–2.5 A	33
							DC 32 V				30
							AC 12.5 V	Ŭ			
							DC 25 V	_			
	•	•					AC 250 V		25RF	100 mA–10 A	
					Sub-miniature	^w 2.57 × ^H 2.57 × ^L 9	DC 125 V				
	•	•			type with leads		AC 125 V DC 125 V		25RT	100 mA–5 A	30
								_	KST2	1 A–30 A	75
		•				[¢] 10.3 × [∟] 38.1	AC 250 V		SKM10	100 mA–30 A	95
	•	•					DC 500 V	Inrush-withstand	SHV22	1 A–10 A	43
	•	•					AC 500 V		SHV4	1 A–10 A	38
		-					AC 400 V			4.4. 00.4	
	•	•					DC 400 V		SHV14	1 A–20 A	41
	•	•			-		AC 380 V	_	SHV4	Over 10 A–20 A	38
		•				[¢] 6.35 × [∟] 31.8			SS2	50 mA–5 A	99
		•			-			Normal-acting	SS6	Over 5 A–8 A	100
	•	•			Cartridge type		AC 250 V		CES14	100 mA–10 A	72
		•						Inrush-withstand	ST4	100 mA–30 A	104
		•					AC 125 V	Normal-acting	SS6	Over 8 A–15 A	100
		•					AC 125 V	<u> </u>	CES6	100 mA–15 A	70
	•	•					AC 125 V	Inrush-withstand		100 mA-30 A	107
	•	•				[¢] 6.35 × [∟] 31.8	DC 125 V		ST6 N1	100 mA–15 A	108
	•	•					DC 700 V	Inrush-withstand		1 A–4 A	42
	•	•					AC 250 V		SL4	80 mA–2 A	96
		•				[¢] 6.35 × [∟] 25.4	AC 125 V	Normal-acting	SL2	80 mA-6 A	96
	-	-			-	5.00 20.7	DC 500 V	Inrush-withstand		1 A–30 A	42

*	(U) or	Ger or Ger	S	Ŷ	Shape	Dimensions (mm)	Rated voltage	Characteristic	Type name	Rated current	Page	
	٠	•					AC 500 V DC 400 V	Inrush-withstand	SHV12	100 mA–6.3 A	40	
	•	•					AC 380 V		SHV2	1 A–6.3 A	38	
		٠						Normal-acting	MQ4	62 mA–3 A	79	
	•				_	[¢] 5.2 × [∟] 20	AC 250 V	Inrush-withstand	MT4	100 mA–3.5 A	85	
	•	•			Cartridge type				MT4 D	100 mA–3.5 A	87	
	•	٠					AC 125 V	Normal-acting	MQ2	62 mA–10 A	77	
	•	•						Inrush-withstand	ULTSC	100 mA–10 A	113	
	•	٠			-		DC 450 V		SHV20	500 mA–6.3 A	43	
	•	•			_	[¢] 4.6 × [∟] 14	AC 125 V	Normal-acting	SQ8	80 mA–3 A	97	
	•	•						Inrush-withstand	MT8	100 mA–3 A	90	
	•	•				[¢] 10.3 × [∟] 38.1	AC 250 V	Inrush-withstand	SKM7	100 mA–30 A	94	
	•	•					AC 500 V		SHV33	10 A–30 A	44	
	٠	٠			_			Normal-acting	SS1	50 mA–5 A	98	
	•	•			_		AC 250 V		SS5	Over 5 A–8 A	100	
	•	•					10200 1	Inrush-withstand	CES15	100 mA–30 A	73	
	•	•				[¢] 6.35 × [∟] 31.8			ST3	100 mA–30 A	103	
	•	•			_	0.00 01.0		Normal-acting	SS5	Over 8 A–15 A	100	
	•				-	/ [AC 125 V		CES7	100 mA–15 A	71	
		•						AC 125 V DC 125 V	ST5	100 mA–30 A	105	
										Over 8 A–30 A	100	
	٠	٠					DC 125 V		ST5 N1	Over 8 A–15 A	106	
					_	[¢] 6.35 × [∟] 30	DC 125 V	V	DC125VTLKR	800 mA–35 A	69	
		•				6 35 x ^L 25 4		SHV27	6.3 A	44		
					Cartridge type-	0.00 ** 20.4	DC 420 V	Inrush-withstand		8 A–30 A		
	•	•			with leads	vith leads	ı leads	AC 400 V DC 400 V	in usi-witistand	SHV11	100 mA–6.3 A	39
	•						AC 380 V		SHV1	1 A-6.3 A	37	
	•	•						Normal-acting	MQ3	62 mA–3 A	78	
	•				1	[¢] 5.2 × [∟] 20	AC 250 V		MT3	100 mA-3.5 A	80	
	•				1			Inrush-withstand	MT3 D	100 mA-3.5 A	82	
								Normal-acting	MQ1	62 mA–10 A	76	
	•							Inrush-withstand	ULTSCR	100 mA–10 A	114	
	٠	٠				¢ a c La a	AC 125 V	Normal-acting	SQ7	80 mA–3 A	97	
	•	•]	[¢] 4.6 × [∟] 14		Inrush-withstand	MT7	100 mA–3 A	90	
	•	•						Quick-acting	NQ3	62 mA–10 A	92	
	•					[¢] 4 × [∟] 9	AC 250 V	Inrush-withstand	NT3	100 mA-10 A	93	
	٠	٠				4 * 9		Quick-acting	NQ1	62 mA–10 A	92	
	٠						AC 125 V	Inrush-withstand	NT1	100 mA-10 A	93	
	•	•			Bolted connection type	[¢] 10 × [∟] 32	AC 500 V	_	500VBL1030A	5 A–50 A	60	
	٠	•			Board mount type	[¢] 10 × [∟] 31	DC 500 V		500VBI1030	5 A–50 A	60	
	•		•			^w 1.6 × ^H 1.05 × ^L 3.2	DC 32 V	Inrush-withstand	32V11CF	800 mA–6.3 A	23	
•					Surface mount type		40.40514	Quick-acting	25CF	63 mA–6.3 A	26	
•					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	^w 2.57 × ^H 2.57 × ^L 6.1	AC 125 V	Inrush-withstand	25CT	100 mA–5 A	27	
•					Sub-miniature type with leads	^w 2.57 × ^H 2.57 × ^L 9	AC 125 V	Quick-acting	25RF	100 mA–5 A	30	

PS *	() or N	or	S	Ø	Shape	Dimensions (mm)	Rated voltage	Characteristic	Type name	Rated current	Page
•							10.0501/	Normal-acting	250V (A) LLC	500 mA–30 A	129
•					-	¢ 40.0 × 100.4	AC 250 V	Inrush-withstand	250V (A) TLLC	500 mA–30 A	134
•						[¢] 10.3 × [∟] 38.1	10 105 1/	Normal-acting	(A) LLC	500 mA–30 A	119
•							AC 125 V		(A) TLLC	500 mA-30 A	124
•							AC 300 V	Inrush-withstand	SHV4	1 A–20 A	38
•							AC 250 V	Normal-acting	250V (A) LNC	100 mA–20 A	128
•						[¢] 6.35 × [∟] 31.8		Inrush-withstand	250V (A) TLNC	100 mA–20 A	133
•								Normal-acting	(A) LNC	100 mA–20 A	118
•							AC 125 V	Inrush-withstand	(A) TLNC	100 mA–20 A	123
•							10.050.1/	Normal-acting	250V (A) LC	100 mA–20 A	127
•							AC 250 V	Inrush-withstand	250V (A) TLC	100 mA–30 A	132
•					Cartridge type	[¢] 6.35 × [∟] 30	10 105 1/	Normal-acting	(A) LC	100 mA–20 A	117
•							AC 125 V	Inrush-withstand	(A) TLC	100 mA–30 A	122
•						[¢] 5.2 × [∟] 20	AC 300 V	Inrush-withstand	SHV2	1 A–6.3 A	38
•							AC 250 V	Normal-acting	250V (A) SC	100 mA–10 A	126
•								Inrush-withstand	250V (A) TSC	100 mA–10 A	131
•								Normal-acting	(A) SC	100 mA–10 A	116
•							AC 125 V	Inrush-withstand	(A) TSC	100 mA–10 A	121
•								Normal-acting	250V @ MSC	100 mA–5 A	125
•						A	AC 250 V	Inrush-withstand	250V (A) TMSC	100 mA–5 A	130
•						[¢] 4.6 × [∟] 16		Normal-acting	(A) MSC	100 mA–5 A	115
•							AC 125 V	Inrush-withstand	(A) TMSC	100 mA–5 A	120
•								Normal-acting	250V @ LLCR	500 mA–30 A	129
•						¢ 40.0 loo 4	AC 250 V	Inrush-withstand	250V @ TLLCR	500 mA–30 A	134
•			[™] 10.3 × [∟] 38	[¢] 10.3 × [∟] 38.1		Normal-acting	(A) LLCR	500 mA–30 A	119		
•							AC 125 V	Inrush-withstand	(A) TLLCR	500 mA–30 A	124
•								Normal-acting	250V @ LNCR	100 mA–20 A	128
•							AC 250 V	Inrush-withstand	250V	100 mA–20 A	133
•						[¢] 6.35 × [∟] 31.8	10 105 11	Normal-acting	(A) LNCR	100 mA–20 A	118
•							AC 125 V	Inrush-withstand	(A) TLNCR	100 mA–20 A	123
•							10.0501/	Normal-acting	250V (A) LCR	100 mA–20 A	127
•						¢ 0.05 00	AC 250 V	Inrush-withstand	250V (A) TLCR	100 mA–30 A	132
•					Cartridge type with leads	[¢] 6.35 × [∟] 30		Normal-acting	(A) LCR	100 mA–20 A	117
•					WILLICAUS		AC 125 V	Inrush-withstand	(A) TLCR	100 mA–30 A	122
•							AC 300 V	Inrush-withstand		1 A–6.3 A	37
•								Normal-acting	250V @ SCR	100 mA–10 A	126
•						[¢] 5.2 × [∟] 20	AC 250 V	Inrush-withstand		100 mA–10 A	131
•								Normal-acting	(A) SCR	100 mA–10 A	116
•							AC 125 V	Inrush-withstand	-	100 mA–10 A	121
•				+-1				Normal-acting	250V @ MSCR	100 mA–5 A	125
•							AC 250 V	Inrush-withstand		100 mA–5 A	130
•						[¢] 4.6 × [∟] 16		Normal-acting	(A) MSCR	100 mA–5 A	115
•							AC 125 V	Inrush-withstand		100 mA–5 A	120
-	•				Surface mount	^w 2.57 × ^H 2.57 × ^L 6.1	DC 72 V	Quick-acting	25CF	18 A	26
	-				type	^w 1.6 × ^H 1.05 × ^L 3.2	DC 35 V	Inrush-withstand		100 mA–10 A	22

\$60 *	b or	or	S	Ø	Shape	Dimensions (mm)	Rated voltage	Characteristic	Type name	Rated current	Page
	•					[¢] 10.3 × [∟] 38.1	AC 125 V		SKM2	3 A–15 A	94
						# 0.05 0.4.0	AC 250 V Inrush-withstar		CES14	Over 10 A–15 A	72
					Cartridge type	[¢] 6.35 × [∟] 31.8	AC 125 V		CES6	Over 15 A–20 A	70
	•					¢ 0 05 145 0	AC 125 V		SU2	100 mA–20 A	109
	•					[¢] 6.35 × [∟] 15.9	DC 60 V	Normal-acting	DCSU2	Over 5 A–20 A	110
	•							1	MQ4	Over 3 A–15 A	79
	•						AC 250 V		MT4	Over 3.5 A–15 A	85
						A				Over 3.5 A–15 A	1
	•					[¢] 5.2 × [∟] 20		Inrush-withstand	MT4 D	100 mA–15 A	87
	•						DC 125 V		MT4 N1D	100 mA-3.5 A	88
	•								MT4 N2D	Over 3.5 A–15 A	89
	•					[¢] 6.35 × [∟] 15.9	AC 125 V		SU1	80 mA–5 A	109
	•							Normal-acting	MQ3	Over 3 A–15 A	78
	•						AC 250 V		MT3	Over 3.5 A–15 A	80
	-				Cartridge type					Over 3.5 A–15 A	
	•				with leads	[¢] 5.2 × [∟] 20		Inrush-withstand	MT3 D	100 mA-15 A	82
	•						DC 125 V		MT3 N1D	100 mA-3.5 A	83
	•						DC 125 V		MT3 N2D	Over 3.5 A–15 A	84
		•			Cortridge type				MQ2	Over 10 A–15 A	77
		•			Cartridge type Cartridge type	[¢] 5.2 × [∟] 20	AC 125 V	Normal-acting			
		•			with leads				MQ1	Over 10 A–15 A	76
			•		Surface mount type	^w 1.6 × ^H 1.05 × ^L 3.2	AC 32 V DC 32 V	Inrush-withstand	32V11CF	800 mA–6.3 A	23
			•		Sub-miniature type with leads	^w 2.57 × ^H 2.57 × ^L 9	AC 125 V DC 125 V	Quick-acting	25RF	200 mA–5 A	30
						^w 3.6 × ^H 3.6 × [⊥] 11	AC 250 V DC 125 V	Quick-acting	36CFE	63 mA–125 mA 63 mA–3.15 A	- 36
					Surface mount type		DC 60 V DC 35 V	Owiek esting	P25CF	63 mA-18 A	28
								Quick-acting			28
						^w 2.57 × ^H 2.57 × ^L 6.1			P25CT	100 mA-5 A	-
								Quick-acting	DC35VP25CF	63 mA-18 A	29
								Inrush-withstand		100 mA-5 A	29
							DC 72 V	Quick-acting	P11CF	100 mA-10 A	24
						^w 1.6 × ^H 1.05 × ^L 3.2		Inrush-withstand		100 mA-10 A	24
							DC 35 V	Quick-acting	DC35VP11CF	100 mA–10 A	25
							AC 90 V	Inrush-withstand Quick-acting	P25RF	100 mA–10 A 100 mA–10 A	25 31
					Sub-miniature	Wa EZ y ^H a EZ y ^L a	DC 90 V AC 90 V				
					type with leads	^w 2.57 × ^H 2.57 × ^L 9	DC 60 V	Inrush-withstand	FZURI	100 mA–6.3 A	31
								Quick-acting	DC35VP25RF	100 mA–10 A	32
							DC 35 V	-	DC35VP25RT	100 mA-6.3 A	32
						[¢] 6.35 × [∟] 31.8	DC 500 V		NSHV14	10 A	47
							AC 42 V	1			
					Cartridge type	[¢] 5.2 × [∟] 20	DC 42 V	Inrush-withstand	PMT4	100 mA–20 A	91
							DC 42 V DC 450 V	-	NSHV12	100 mA–6.3 A	46
						[¢] 10.3 × [∟] 38.1	DC 400 V	Normal-acting	LLD6500	15 A	110
							AC 500 V		NSHV3	1 A–10 A	45
								-			
					Cartridge type	[¢] 6.35 × [∟] 31.8	AC 400 V		NSHV13	5 A-25 A	45
					with leads		DC 400 V	Inrush-withstand	NSHV23A	1 A-20 A	48
							DC 700 V	-	NSHV15	1 A-4 A	47
						¢ 6.35 × ^L 25.4	DC 500 V	4	NSHV17	1 A–30 A	48
						[¢] 4 × [∟] 9	DC 100 V		PNT5	100 mA–10 A	91

(AS)	() or	Gr or Gr	S	Ŷ	Shape	Dimensions (mm)	Rated voltage	Characteristic	Type name	Rated current	Page		
						[¢] 40 × [∟] 65	DC 800 V DC 500 V		PT4065	400 A–500 A	53		
						[¢] 31 × [∟] 51			DC450VPT3050	250 A-350 A	55		
						[¢] 30 × [∟] 50	DC 450 V		DC450VBT3050	250 A-350 A	53		
						[¢] 26 × [∟] 46			DC450VPT2545	180 A–225 A	54		
						[¢] 25 × [∟] 42.6	DC 500 V		DC500VBT2543	225 A	61		
						[¢] 20 × [∟] 35	DC 450 V		DC450VPT2035	100 A–150 A	54		
							DC 900 V			10A-40 A			
							DC 700 V			50 A	1		
							DC 600 V		PC1037	40A–50 A	49		
					-		DC 500 V			10A–60 A	1		
					Bolted		DC 480 V	_		70A–100 A	-		
					connection type	[¢] 10.3 × [∟] 37	AC 310 V			30A-80 A			
							DC 1000 V			30A–50 A	-		
							DC 900 V		PC1037C	40A–50 A	50		
							DC 500 V			70 A			
					-		DC 480 V			80 A			
					[¢] 10 ×		AC 450 V		AC450VBL1030C	60 A	58		
						A 1			500VBL1030A	5 A-40 A	60		
						[¢] 10 × [∟] 32	DC 500 V		DC500VBL1030F	60 A	59		
					-		DC 72 V		DC72VBL1030	50 A-70 A	59		
								[¢] 6.35 × [⊥] 31.8			DC500VBC635C	5 A–30 A	57
						[¢] 6.35 × [∟] 24.6	—DC 500 V		DC500VBC625A	5 A-35 A	55		
							DC 900 V			10A-40 A	51		
							DC 700 V	-		50 A			
							DC 600 V		PI1037	40A–50 A			
							DC 500 V			10A-60 A			
					-	A 1	DC 480 V			70A–100 A			
					-	[¢] 10.3 × [∟] 37	AC 310 V	C 310 V		30A-80 A	-		
					-		DC 1000 V			30A–50 A	-		
					Board mount type		DC 900 V	-	PI1037C	40A–50 A	52		
						775		DC 500 V			70 A	-	
							DC 480 V			80 A	1		
						[¢] 10 × [∟] 31	DC 500 V		500VBI1030	5 A-40 A	60		
						<u></u>	DC 600 V		DC600VBI625C	30 A	57		
						[¢] 6.35 × [∟] 24.6	DC 550 V DC 300 V		DC550VBI625C	35 A	56		
					•		DC 500 V		DC500VBI625C	5 A-35 A	56		

Search by type name

	Fuses / Protectors	Page			Page			Page			Page
1	11CF	21	A	(A) TLNC	123		MCF3	33	s	SHV16	42
	11CFB	20		(A) TLNCR	123	1	MQ1	76		SHV18	42
	11CT	21		(A) TMSC	120	1	MQ1 N1	76		SHV2	38
	11CTB	20	1	(A) TMSCR	120	1	MQ2	77		SHV20	43
			J	(A) TSC	121	1	MQ2 N1	77		SHV22	43
2	250V @ LC	127]	A TSCR	121	1	MQ3	78		SHV27	44
-	250V @ LCR	127		Oreen			MQ3 N1	78		SHV33	44
	250V @ LLC	129	c	CES14	72	1	MQ4	79		SHV4	38
	250V @ LLCR	129	Ĭ	CES14 N1	72	1	MQ4 N1	79		SKM10	95
	250V @ LNC	128		CES14 N2	73	1	MT3	80		SKM10 N1	95
	250V @ LNCR	128	1	CES15	73	1	MT3 D	82		SKM2	94
	250V @ MSC	125	1	CES15 N1	74	1	MT3 N1	80		SKM7	94
	250V @ MSCR	125		CES6	70	1	MT3 N1D	83		SL2	96
	250V @ NOOK	120		CES6 N1	70	1	MT3 N2	81		SL4	96
	250V @ SCR	120		CES7	71	{	MT3 N2D	84		SMC N4	37
	250V @ TLC	132		CES7 N1	71	1	MT4	85		SQ7	97
	250V @ TLCR	132			7 1		MT4 D	87		SQ8	97
	250V @ TLLC	132	D	DC125VTLKR	69	1	MT4 D MT4 N1	85		SS1	98
	250V @ TLLCR	134		DC300V25CF	27	{	MT4 N1D	88		SS1 N1	98
		134		DC300V25CF DC35V11CT		-	MT4 N1D MT4 N2			SST NT	
	250V @ TLNC				22	-		86		SS2 N1	99
	250V @ TLNCR	133		DC35VP11CF	25	{	MT4 N2D	89			99
	250V @ TMSC	130		DC35VP11CT	25	-	MT7	90		SS5	100
	250V @ TMSCR	130		DC35VP25CF	29	-	MT8	90		SS5 N1	101
	250V @ TSC	131		DC35VP25CT	29	┤		00		SS6	100
	250V @ TSCR	131	{	DC35VP25RF	32	N		92		SS6 N1	102
	250VTMCR N1	69		DC35VP25RT	32	-	NQ3	92		ST3	103
	25CF	26		DC450VBT3050	53	-	NSHV12	46		ST3 N1	103
	25CT	27		DC450VPT2035	54	4	NSHV13	45		ST4	104
	25RF	30		DC450VPT2545	54	-	NSHV14	47		ST4 N1	104
	25RT	30]	DC450VPT3050	55		NSHV15	47		ST5	105
	[1	DC500VBC625A	55		NSHV17	48		ST5 N1	106
3	32V11CF	23		DC500VBC635C	57		NSHV23A	48		ST6	107
	36CFA	35		DC500VBI625C	56		NSHV3	45		ST6 N1	108
	36CFE	36		DC500VBL1030F	59		NT1	93		SU1	109
	36CT	34	J	DC500VBT2543	61	1	NT3	93		SU2	109
	[1	DC550VBI625C	56	1					
5	500VBI1030	60		DC600VBI625C	57	P	P11CF	24	Т	TLC N4	111
	500VBL1030A	60	J	DC72VBL1030	59		P11CT	24		TLCR N4	112
			1	DC86V11CT	22		P25CF	28			
Α	AC250VBL1030C	58		DCSU2	110		P25CT	28	U	ULTSC	113
	AC450VBL1030C	58					P25RF	31		ULTSC N1	113
	(A) LC	117				_	P25RT	31		ULTSCR	114
	(A) LCR	117	E	EQ	62		PC1037	49		ULTSCR N1	114
	(A) LLC	119		ET	63		PC1037C	50			
	(A) LLCR	119		ET6	64		PI1037	51			
	(A) LNC	118		ET6R	65]	PI1037C	52		Fuseholders / Fuse	e clips
	(A) LNCR	118	1			_	PMT4	91		BM-LQ-I-13	135
	(A) MSC	115	Н	HQ N7	66]	PNT5	91		BM-LQ-I-15	135
	(A) MSCR	115	1	HT N5	67	1	PT4065	53		BM-SS-I-14	135
	(A) SC	116	1	HTR N5	68	1				H-0014-2	136
	A SCR	116	1	L		-				H-0016-2	136
	TLC	122	K	KST2	75	s	SHV1	37		H-0017-2	137
	(A) TLCR	122	1	KST2 N1	75	1	SHV11	39		H-0032-2	136
	(A) TLLC	124	1	L	-	-	SHV12	40		H-0048-2	137
	(A) TLLCR	124	L	LLD6500	110]	SHV14	41		H-0084-2	137
			, -			1					

Safety Precautions

Failure to properly select, install, and use fuses may result not only in property damage due to fire and other disasters, but also bodily harm, serious injury, and/or death. This catalog contains as references only a portion of the data available for the products listed. Before selecting a fuse, confirm the latest product specifications and parameters with one of SOC's local sales representatives.

- Use fuses within their specified limits. Use outside of specified conditions can cause nuisance operations and disconnection of the fuse-element, among other things, and may lead to the occurrence of accidents. Please note that breaking conditions for currents below the minimum breaking current and which exceed the rated breaking current are outside the range of the specification conditions. Please use this product after ensuring that the actual breaking conditions in the application are not included in this range.
- Product specification will depend on the product type. Please confirm this with your sales representative.
- Before final fuse selection, always test the proposed fuse in your actual equipment to ensure the fuse satisfies all operational and safety requirements.
- Be aware the breaking ability of a fuse will differ depending on whether the circuit is an AC or DC circuit. Fuses intended for use in AC circuits should not be employed in DC circuits, and vice versa, as this may result in accidents such as explosions, property damage, and/or serious injury. (Refer to p. 144 of this catalog.)
- In regard to environmental conditions, represented by the following, use outside of specifications may cause changes to a fuse's electrical characteristics, nuisance operations, and disconnection of the fuse-element, among other things. Please confirm specifications with your SOC sales representative.
 - * Ambient temperature and/or temperature changes
 - * High-temperature and/or high-humidity
 - * Vibrations and/or impacts
 - * Condensation
- Do not use fuses where they may be exposed to corrosive and/or flammable gasses. Doing so may result in nuisance operations, disconnection of the fuse-element, and/or explosions.
- Do not use ultrasonic cleaning on fuses as this can result in disconnection of the fuse-element, which may lead to an accident.
- Coating or potting a fuse may change its electrical characteristics. Please consult your SOC sales representative before applying treatment as this may result in an accident.
- Never force a fuse into a fuseholder/fuse clip. Contact failure caused by damage to the fuse or deformation of the fuseholder's clips due to impact or forcing the fuse into the holder may significantly alter the fuse's electrical characteristics and lifetime, and may lead to accidents including nuisance operations.
- Turn off all power leading to a fuse before touching it. Failure to do so may result in electrocution or serious burns.
- Products in this catalog are intended for use in standard electronic equipment. Please consult your SOC sales representative before using fuses in life-critical equipment, equipment which requires a high degree of quality and reliability, and any other similar equipment.
- Use sample fuses only for evaluation. Do not reuse sample or other previously used fuses. Properly dispose of fuses in accordance with local laws and regulations.

IMPORTANT NOTICES

- Operating, electrical, and/or mechanical characteristic limits for products covered in this catalog, as well as product availability, are subject to change without prior notice.
- The content of this catalog was considered to be reliable at the time of its preparation (March 2025); however, the accuracy of information herein cannot be guaranteed. Check with your local SOC sales representative before finalizing fuse selection.
- Questions related to product applications, specifications, or performance characteristics may be directed to SOC sales representatives.

SOC Corporation

Headquarters	3-16-17 Takanawa, Minato-ku, Tokyo 108-0074, Japan TEL +81-3-5420-1011 FAX +81-3-5420-6699
SOC America Inc.	414 S Service Rd #519, Patchogue, NY 11772 USA TEL +1-631-472-6666
SOC Asia Pte. Ltd.	15 Jalan Kilang Barat, #07-02 Frontech Centre, Singapore 159357 TEL +65-6376-4115
SOC Europe B.V.	Databankweg 1, 3821 AL Amersfoort, the Netherlands TEL +31-33-450-4000